

**UNISONIC TECHNOLOGIES CO., LTD** 

MA2803

Preliminary

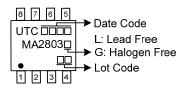
LINEAR INTEGRATED CIRCUIT

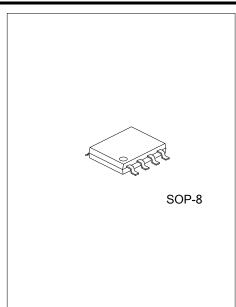
# EARTH LEAKAGE DETECTOR

## DESCRIPTION

The **MA2803** is designed for use in earth leakage circuit interrupters, for operation directly off the AC line in breakers. The input of the differential amplifier is connected to the secondary coil of Zero Current Transformer (ZCT). The amplified output of differential amplifier is integrated at external capacitor to gain adequate time delay. The level comparator generates a high level when earth leakage current is greater than the fixed level.

## FEATURES

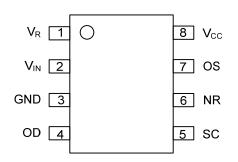

- \* Low Power Consumption: 5mW, 100V / 200V
- \* Built-in Voltage Regulator
- \* High-gain Differential Amplifier
- \* 0.4mA Output Current Pulse to Trigger SCRs
- \* Low External Part Count
- \* High Noise Immunity, Large Surge Margin
- \* Super Temperature Characteristic of Input Sensitivity
- \* Wide Operating Temperature Range: T<sub>A</sub> = −25°C to +80°C
- \* Operation from 12V to 20V Input


#### ORDERING INFORMATION

| Ordering Number |               | Deskere | Deaking   |  |
|-----------------|---------------|---------|-----------|--|
| Lead Free       | Halogen Free  | Package | Packing   |  |
| MA2803L-S08-R   | MA2803G-S08-R | SOP-8   | Tape Reel |  |

| be Reel                                 |
|-----------------------------------------|
|                                         |
| SOP-8                                   |
| alogen Free and Lead Free, L: Lead Free |
|                                         |

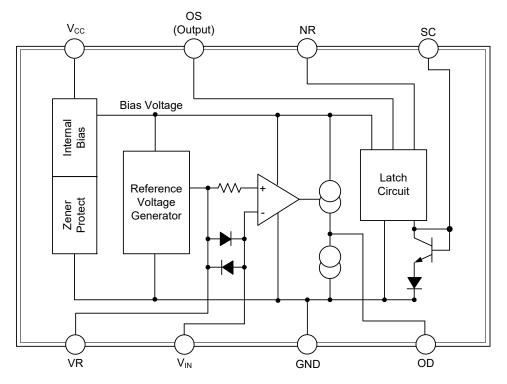
## MARKING






# MA2803

Preliminary


# PIN CONFIGURATION



#### PIN DESCRIPTION

| PIN NO. | PIN NAME | DESCRIPTION                                     |  |
|---------|----------|-------------------------------------------------|--|
| 1       | VR       | n inverting input for current sensing amplifier |  |
| 2       | VIN      | Inverting Input for current sensing amplifier   |  |
| 3       | GND      | Ground                                          |  |
| 4       | OD       | Output of current sensing amplifier             |  |
| 5       | SC       | Input of latch circuit                          |  |
| 6       | NR       | Noise absorption                                |  |
| 7       | OS       | Gate drive for external SCR                     |  |
| 8       | Vcc      | Power supply input circuitry                    |  |

## BLOCK DIAGRAM





#### Preliminary

# LINEAR INTEGRATED CIRCUIT

#### ■ ABSOLUTE MAXIMUM RATING (T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                 | SYMBOL           | RATINGS    | UNIT |  |
|---------------------------|------------------|------------|------|--|
| Supply Voltage            | Vcc              | 20         | V    |  |
| Supply Current            | lcc              | 8          | mA   |  |
| Power Dissipation         | PD               | 300        | mW   |  |
| Operating Temperature     | T <sub>A</sub>   | -25 ~ +80  | °C   |  |
| Storage Temperature Range | T <sub>STG</sub> | -65 ~ +150 | °C   |  |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

#### ■ ELECTRICAL CHARACTERISTICS (T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                                   | SYMBOL  | TEST CONDITIONS                                                                                                                | MIN | TYP | MAX  | UNIT  |
|---------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------|-----|-----|------|-------|
| Supply Current (Note 2)                     | lcc     | V <sub>CC</sub> =12V, V <sub>R</sub> =OPEN<br>V <sub>IN</sub> =2V<br>See Test Circuit Figure 1                                 | 300 | 400 | 530  | μA    |
| Trip Voltage                                | VT      | V <sub>CC</sub> =16V, V <sub>R</sub> =2V~2.02V<br>V <sub>IN</sub> =2V<br>See Test Circuit Figure 2                             | 14  | 16  | 18   | mVrms |
| Differential Amplifier Current<br>Current 1 |         | V <sub>CC</sub> =16V, V <sub>R</sub> -V <sub>I</sub> =30mV<br>V <sub>OD</sub> =1.2V<br>See Test Circuit Figure 4               | -12 | -18 | -30  | μA    |
| Differential Amplifier Current<br>Current 2 |         | V <sub>CC</sub> =16V, V <sub>R</sub> =0.8V, V <sub>R</sub><br>V <sub>I</sub> Short=V <sub>P</sub><br>See Test Circuit Figure 5 | 15  | 25  | 35   | μA    |
| Output Current                              | lo      | V <sub>SC</sub> =1.4V, V <sub>OS</sub> =0.8V,<br>V <sub>CC</sub> =16V<br>See Test Circuit Figure 6                             | 200 | 350 | 800  | μA    |
| Latch-On Voltage                            | Vsc(on) | V <sub>CC</sub> =16V<br>See Test Circuit Figure 7                                                                              | 0.7 | 1.0 | 1.4  | V     |
| Latch Input Current                         | Isc(on) | V <sub>CC</sub> =16V<br>See Test Circuit Figure 8                                                                              | -18 | -7  | -1   | μA    |
| Output Low Current                          | Iosl    | V <sub>CC</sub> =12V, V <sub>OSL</sub> =0.2V<br>See Test Circuit Figure 9                                                      | 100 | 500 | 1000 | μA    |
| Differential Input Clamp Voltage            | VIDC    | V <sub>CC</sub> =16V, I <sub>IDC</sub> =100mA<br>See Test Circuit Figure 10                                                    | 0.4 | 1.2 | 2.0  | V     |
| Maximum Current Voltage                     | Vsm     | I <sub>SM</sub> =7mA<br>See Test Circuit Figure 11                                                                             | 22  | 26  | 30   | V     |
| Supply Current 2                            | ls2     | V <sub>CC</sub> =12V, V <sub>OSL</sub> =0.6V<br>See Test Circuit Figure 12                                                     | 200 | 400 | 900  | μA    |
| Latch-Off Supply Voltage                    | VSOFF   | V <sub>OS</sub> =12V, V <sub>SC</sub> =1.8V<br>I <sub>IDC</sub> =100mA<br>See Test Circuit Figure 13                           | 7.5 | 9.0 |      | V     |
| Response Time                               | ton     | $V_{CC}$ =16V, V <sub>R</sub> -V <sub>I</sub> =0.3V,<br>1V < V <sub>X</sub> < 5V<br>See Test Circuit Figure 14                 | 2   | 3   | 4    | ms    |

Notes: 1. Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

2. Guaranteed by design, not tested in production.



# TEST CIRCUITS

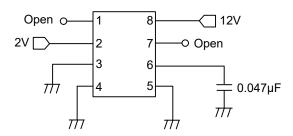
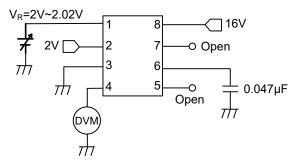




Figure 1. Supply Current 1





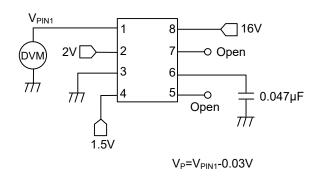



Figure 3. VPN1 for VP Measurement





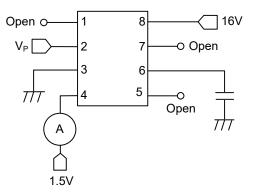



Figure 4. Differential Amplifier Output Current 1

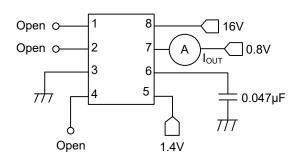



Figure 6. Output Current



## TEST CIRCUITS

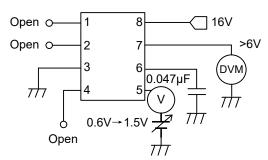
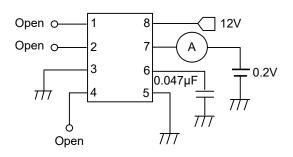




Figure 7. Latch-On Voltage



#### Figure 9. Output Low Current

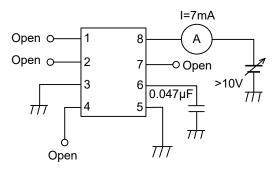



Figure 11. Maximum Current Voltage

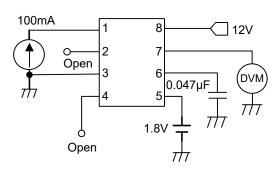



Figure 13. Latoh-Off Supply Voltage

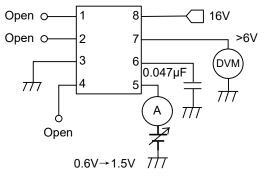



Figure 8. Latch Input Current

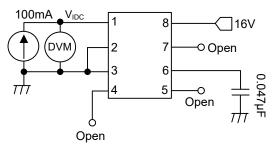



Figure 10. Differential Input Clamp Voltage

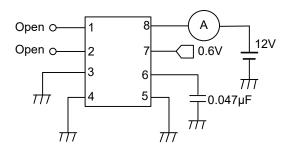



Figure 12. Supply Current 2

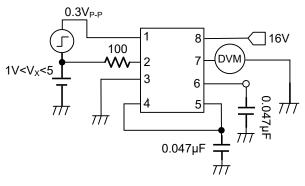



Figure 14. Response Time



#### APPLICATION INFORMATION

Figure 15 shows the **MA2803** connected in a typical leakage current detector system. The power is applied to the V<sub>CC</sub> terminal (Pin 8) directly from the power line. The resistor RS and capacitor C<sub>S</sub> are chosen so that Pin 8 voltage is at least 12 V. The value of C<sub>S</sub> is recommended above 1 F. If the leakage current is at the load, it is detected by the Zero Current Transformer (ZCT). The output voltage signal of ZCT is amplified by the differential amplifier of the **MA2803** internal circuit and appears as a half-cycle sine wave signal referred to input signal at the output of the amplifier. The amplifier closed-loop gain is fixed about 1000 times with internal feedback resistor to compensate for Zero Current Transformer (ZCT) variations. The resistor RL should be selected so that the breaker satisfies the required sensing current. The protection resistor RP is not usually used when high current is injected at the breaker; this resistor should be used to protect the earth leakage detector IC (**MA2803**). The range of RP is from several hundred to several k.

Capacitor  $C_1$  is for the noise canceller and a standard value of  $C_1$  is  $0.047\mu$ F. Capacitor  $C_2$  is also a noise canceller capacitance, but it is not usually used.

When high noise is present, a  $0.047\mu$ F capacitor may be connected between Pins 6 and 7. The amplified signal finally appears at the Pin 7 with pulse signal through the internal latch circuit of the **MA2803**. This signal drives the gate of the external SCR, which energizes the trip coil, which opens the circuit breaker. The trip time of the breaker is determined by capacitor C3 and the mechanism breaker. This capacitor should be selected under  $1\mu$ F to satisfy the required trip time. The full-wave bridge supplies power to the **MA2803** during both the positive and negative half cycles of the line voltage. This allows the hot and neutral lines to be interchanged.

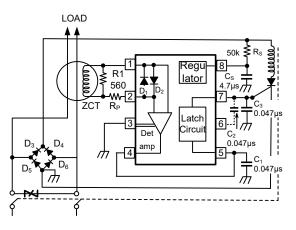



Figure 15. Full-wave Application Circuit

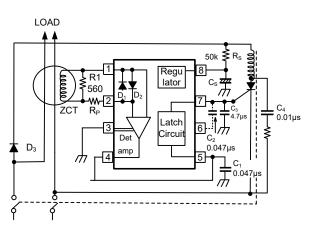



Figure 16. Half-wave Application Circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

