

UNISONIC TECHNOLOGIES CO., LTD

UH8109 CMOS IC Preliminary

LOW CURRENT CONSUMPTION OMNIPOLAR **DETECTION TYPE HALL EFFECT SWITCH IC**

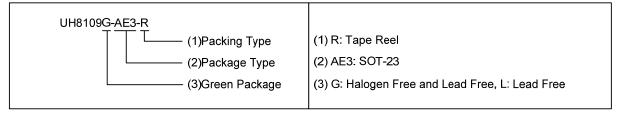
DESCRIPTION

The UTC UH8109, developed by CMOS technology, is a high-accuracy Hall effect switch IC that operates with low current consumption.

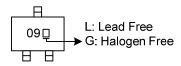
The output voltage changes when this IC detects the intensity level of magnetic flux density. Using this IC with a magnet makes it possible to detect the open / close in various devices.

Due to its high-accuracy magnetic characteristics, this IC can make operation's dispersion in the system combined with magnet smaller.

FEATURES

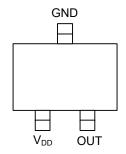

- * Power supply voltage range: $V_{DD} = 2.7V \sim 5.5V$
- * Pole detection: Detection of omnipolar
- * Output logic: Active "L"
- * Output form: CMOS output
- * Magnetic sensitivity: $B_{OP} = 7.0 \text{mT}$ typ.
- * Operating cycle (Current consumption):

Product with omnipolar detection


 $t_{CYCLE} = 30.50 \text{ms} (I_{DD} = 4.0 \mu\text{A}) \text{ typ}.$

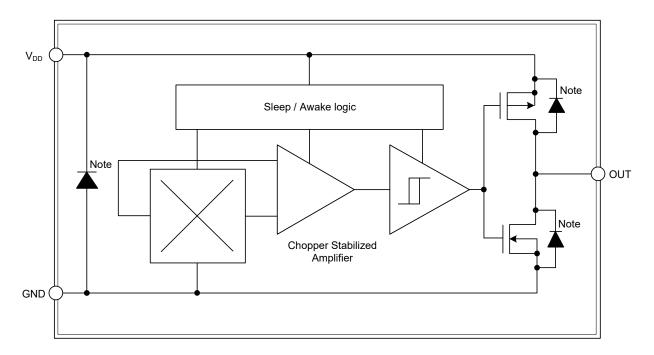
ORDERING INFORMATION

Ordering	Number Bookege Booking		
Lead Free	Halogen Free	Package	Packing
UH8109L-AE3-R	UH8109G-AE3-R	SOT-23	Tape Reel



MARKING

www.unisonic.com.tw 1 of 4


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V_{DD}	Power supply
2	OUT	Output
3	GND	Ground

■ BLOCK DIAGRAM

Note: Parasitic Diode.

ABSOLUTE MAXIMUM RATING (TA=25°C, unless otherwise specified)

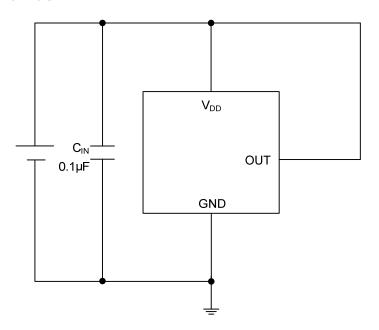
PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	V_{DD}	7.0	V
Output Current	lout	±2.0	mA
Output Voltage	V _{OUT}	V_{DD}	V
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-40 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

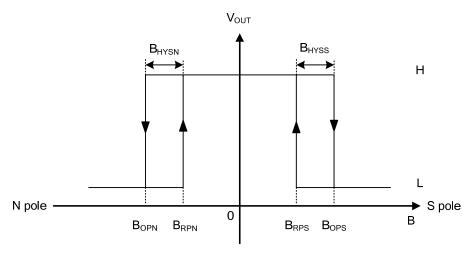
■ ELECTRICAL CHARACTERISTICS (V_{DD}=5.0V,-T_A=25°C unless otherwise specified)

PARAMETER	SYMBOL	TEST	MIN	TYP	MAX	UNIT	
Power Supply Voltage	V_{DD}			2.7	5.0	5.5	V
Current Consumption	I _{DD}	Average Value			4.0	8.0	μΑ
Output Voltage		CMOS Output Product	Output Transistor N-CH, I _{OUT} = 2mA			0.4	V
	Vouт		Output Transistor P-CH, I _{OUT} = -2mA	V _{DD} -0.4			V
Awake Mode Time	t _{AW}				0.10		ms
Sleep Mode Time	tsL				30.4		ms
Operating Cycle	tcycle	t _{AW} + t _{SL}			30.5	60	ms

■ MAGNETIC CHARACTERISTICS (V_{DD}=5.0V, T_A=25°C unless otherwise specified)


Product with omnipolar detection

Product with $B_{OP} = 7.0 \text{mT}$ typ.


1 TOGGOT WITH DOP = 7.01111 ty	/P·						
PARAMETER	_	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operation Point (Note 1)	S pole	Bops		5.0	7.0	8.5	mT
	N pole	B _{OPN}		-8.5	-7.0	-5.0	mT
Delegas Daint (Note 2)	S pole	B _{RPS}		3.7	5.2	7.2	mT
Release Point (Note 2)	N pole	B _{RPN}		-7.2	-5.2	-3.7	mT
Livetonosio Midth (Noto 2)	(Nata 2) S pole	B _{HYSS}	B _{HYSS} = B _{OPS} - B _{RPS}		1.8		mT
Hysteresis Width (Note 3)	N pole	BHYSN	BHYSN = IBOPN - BRPNI		1.8	mT	

- Notes: 1. Bopn, Bops: Operation points Bopn and Bops are the values of magnetic flux density when the output voltage (Vout) is inverted after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is increased (by moving the magnet closer). Even when the magnetic flux density exceeds Bopn or Bops, Vout retains the status.
 - 2. B_{RPN}, B_{RPS}: Release points B_{RPN} and B_{RPS} are the values of magnetic flux density when the output voltage (V_{OUT}) is inverted after the magnetic flux density applied to this IC by the magnet (N pole or S pole) is decreased (the magnet is moved further away). Even when the magnetic flux density falls below B_{RPN} or B_{RPS}, V_{OUT} retains the status.
 - 3. B_{HYSN}, B_{HYSS}: Hysteresis widths B_{HYSN} and B_{HYSS} are the difference between B_{OPN} and B_{RPN}, and B_{OPS} and B_{RPS}, respectively.

■ STANDARD CIRCUIT

■ MAGNETIC FLUX

Magnetic flux density (B)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.