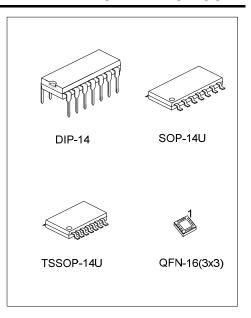
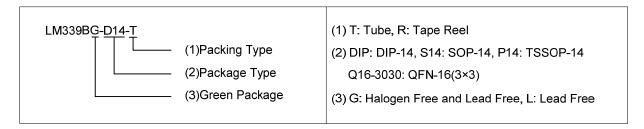
LM339B

LINEAR INTEGRATED CIRCUIT

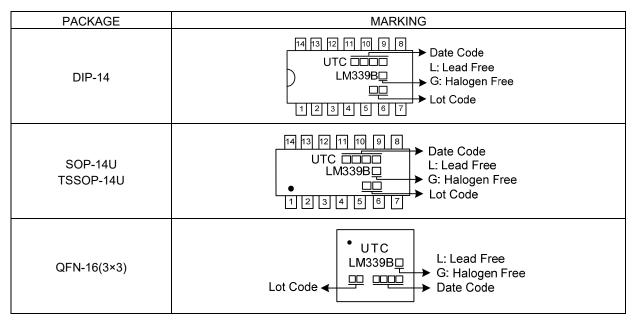

QUAD DIFFERENTIAL COMPARATOR

■ DESCRIPTION

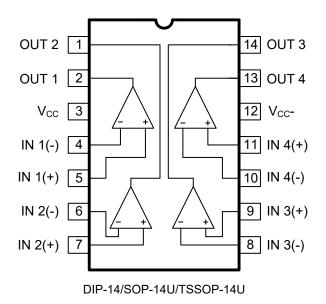
The UTC **LM339B** consists of four independent voltage comparators, designed specifically to operate from a single power supply over a wide voltage range.

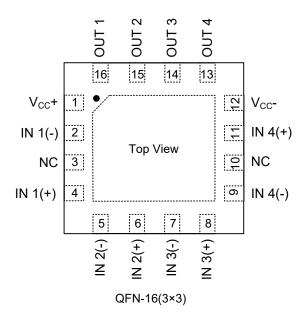

■ FEATURES

- * Signal or Dual Supply Operation
- * Wide Operating Supply Range (Vcc=2V ~ 36V or ±1 ~ ±18V)
- * Input Common-Mode Voltage Includes Ground.
- * Low Supply Current Icc=0.8mA (Typical)
- * Open Collector Outputs for Wired and Connection
- * Low Output Saturation Voltage
- * Output Compatible with TTL, DTL, and CMOS Logic System
- *High ESD (2kV, HBM)

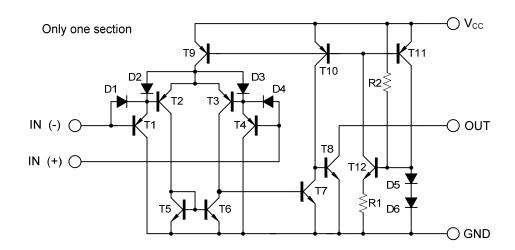

■ ORDERING INFORMATION

Ordering Number		Dealsers	Dealine	
Lead Free	Halogen-Free	Package	Packing	
LM339BL-D14-T	LM339BG-D14-T	DIP-14	Tube	
LM339BL-UEA-R	LM339BG-UEA-R	SOP-14U	Tape Reel	
LM339BL-UEB-R	LM339BG-UEB-R	TSSOP-14U	Tape Reel	
LM339BL-Q16-3030-R	LM339BG-Q16-3030-R	QFN-16(3×3)	Tape Reel	




www.unisonic.com.tw 1 of 5

MARKING



PIN CONFIGURATION

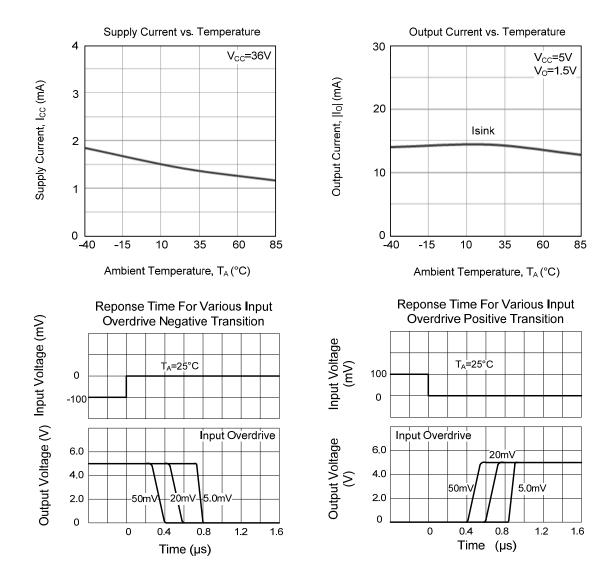
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		Vcc	38	V
Differential input Voltage		V _{I(DIFF)}	±38	V
Input Voltage		V_{IN}	-0.3 ~ 38	V
Power Dissipation	DIP-14	P _D	900	mW
	SOP-14U		560	mW
	TSSOP-14U		440	mW
	QFN-16(3×3)		1300	mW
Electrostatic Discharge	Human-Body Model (HBM) Per JESD22-A114/115	V _(ESD)	2000	V
Junction Temperature		T_J	+150	°C
Operating Temperature		Topr	-40 ~ +85	°C
Storage Temperature		Tstg	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ ELECTRICAL CHARACTERISTICS

(Vcc=5.0V,All voltage referenced to GND unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current	Icc	R _L =∞, V _{CC} =5V		0.8	1.3	mA
		V _{CC} =36V, T _A = Full range			2.0	mA
Input Offset Voltage	V _{I(OFF)}	V_{CM} =0V toV _{CC} -1.5V V _{O(P)} =1.4V, R _S =0 Ω		1.5	3.0	mV
		T _A = Full range			5.5	mV
Input Offset Current	I _{I(OFF)}			2.3	25	nA
		T _A =- Full range			50	nA
Input Bias Current	I _{I(BIAS)}			9	25	nA
		T _A = Full range			50	nA
Input Common Mode Voltage	V _{I(CM)}	V _{CC} =3~36V	0		Vcc-1.5	V
		T _A = Full range	0		Vcc-2.0	V
Large Signal Voltage Gain	G∨	V_{CC} =15 V , R_L >15 $k\Omega$	50	200		V/mV
Output Saturation Voltage	Vsat	V _I (-)>1V, V _I (+)=0V, I _{SINK} =4mA		100	400	mV
		T _A = Full range			550	mV
Output Sink Current	lo(sink)	$V_1(-)>1V$, $V_1(+)=0V$, $V_2(p)<1.5V$	6	15		mΑ
Output Leakage Current	I _{O(LEAK)}	V _{OUT(P)} = 5V	,	5	50	nA
		$V_{I}(+)=1V, V_{I}(-)=0V,$ $V_{OUT(P)}=36V$	/		100	nA
Large Signal Response Time	t _R	V_{IN} =TTL logic wing V_{REF} =1.4V, V_{RL} =5V, R_L =5.1k Ω ,		300		ns
Response Time	t _R	V_{RL} =5V, R_L =5.1k Ω		1400		ns

^{2.} It is guarantee by design, not 100% be tested.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.