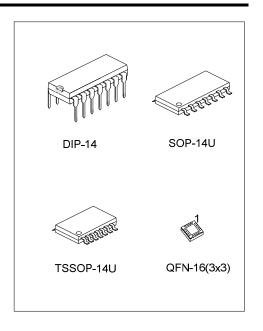
UNISONIC TECHNOLOGIES CO., LTD

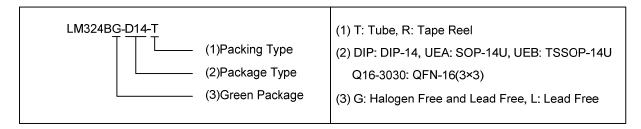
LM324B

LINEAR INTEGRATED CIRCUIT

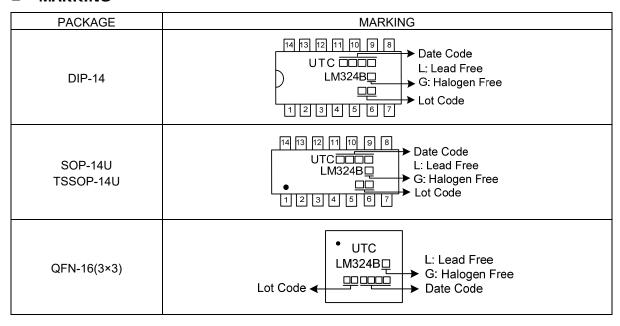

QUAD OPERATIONAL AMPLIFIERS

DESCRIPTION

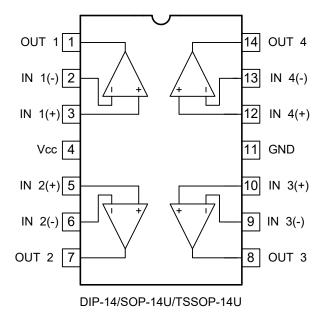
The UTC LM324B consists of four independent, high gain internally frequency compensated operational amplifiers which are designed specifically to operated from a single power supply over a wide voltage range. Operation from split power supplies is also possible. Application areas include transducer amplifier, DC gain blocks and all the conventional OP amp circuits which now can be easily implemented in single power supply system.

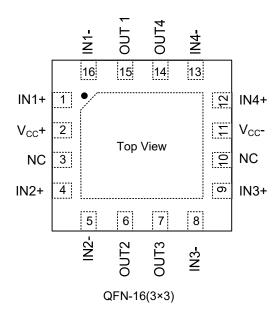

FEATURES

- *Internally frequency compensated for unity gain
- *Large DC voltage gain :100dB
- *Wide operating supply range (Vcc=3V~36V)
- *Input common-mode voltage includes ground
- *Large output voltage swing: From 0V to Vcc-1.5V
- *Power drain suitable for battery operation
- *High ESD (2kV, HBM)

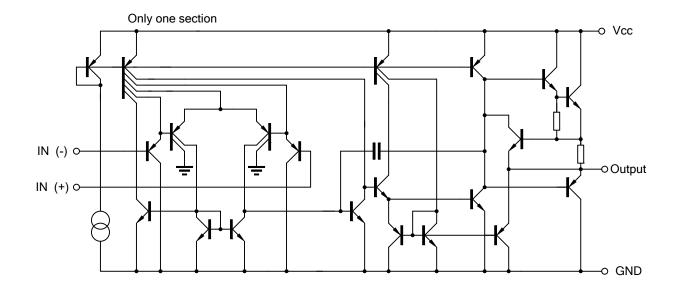

ORDERING INFORMATION

Ordering Number		Dookogo	Dooking	
Lead Free	Halogen-Free	Package	Packing	
LM324BL-D14-T	LM324BG-D14-T	DIP-14	Tube	
LM324BL-UEA-R	LM324BG-UEA-R	SOP-14U	Tape Reel	
LM324BL-UEB-R	LM324BG-UEB-R	TSSOP-14U	Tape Reel	
LM324BL-Q16-3030-R	LM324BG-Q16-3030-R	QFN-16(3×3)	Tape Reel	




www.unisonic.com.tw 1 of 6 QW-R105-137.B

■ MARKING

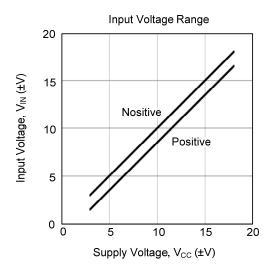


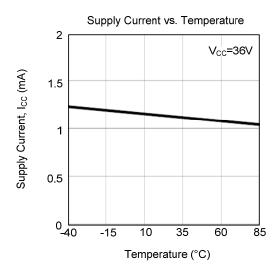
■ PIN DESCRIPTION

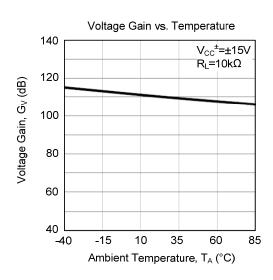
■ BLOCK DIAGRAM

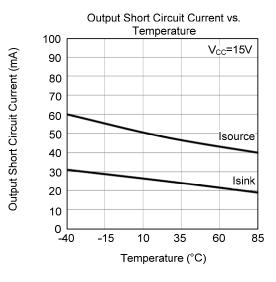
■ ABSOLUTE MAXIMUM RATINGS

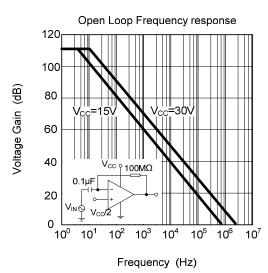
PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		Vcc	±20 or 40	V
Differential Input Voltage		V _{I(DIFF)}	±40	V
Input Voltage		V _{IN}	-0.3 ~ +40	V
Power Dissipation	DIP-14	P _D	800	mW
	SOP-14U		580	mW
	TSSOP-14U		460	mW
	QFN-16(3×3)		1300	mW
Electrostatic Discharge	Human-Body Model (HBM) Per JESD22-A114/115	V _(ESD)	2000	٧
Operating Temperature		T _{OPR}	-40 ~ +85	°C
Storage Temperature		Tstg	-65 ~ +150	°C

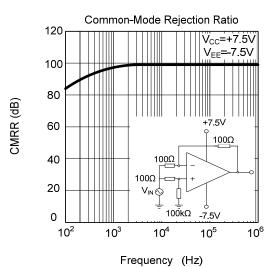

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

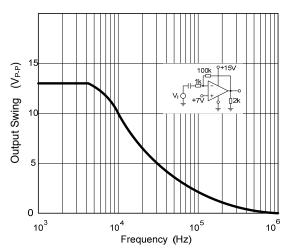

■ ELECTRICAL CHARACTERISTICS

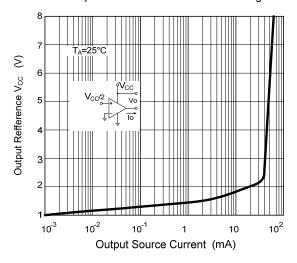

(V_{CC}=5.0V, All voltage referenced to GND unless otherwise specified.)


PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply Current	Icc	R _L =∞, V _{CC} =36V		1.0	3.0	mΑ
		V _{CC} =5V		0.7	1.2	mΑ
Power Supply Rejection Ratio	PSRR		65	100		dB
Input Offset Voltage	V _{I(OFF)}	$V_{CM}=0V$ to $V_{CC}-1.5V$ $V_{O(P)}=1.4V$, $R_S=0\Omega$		0.5	3.0	mV
Input Offset Current	I _{I(OFF)}	VO(P)=1.4V, NS=022		1.5	10	nA
Input Bias Current	I _{I(BIAS)}				50	nA
Input Common Mode Voltage	V _{I(CM)}	V _{CC} =36V	0		V _{CC} -1.5	V
Common Mode Rejection Ratio	CMRR		65	90		dB
Large Signal Voltage Gain	Gv	V_{CC} =15V, $R_L \ge 10$ KΩ $V_{O(P)}$ =1V ~ 11V	50	100		V/mV
	Vон	Io=50uA	Vcc-1.6	Vcc-1.4		V
Output Voltage Swing		I _O =1mA	Vcc-1.7	Vcc-1.5		٧
		Io=5mA	Vcc-1.8	Vcc-1.6		٧
	VoL	Io=50uA			150	mV
		I _O =1mA		0.75	1	٧
Output Current	Isource	V ₁ (+)=1V, V ₁ (-)=0V V _{CC} =15V, V _O =GND	-20	-45		mA
	Isink	V _I (+)=0V, V _I (-)=1V V _{CC} =15V, V _O = V _{CC}	10	25		mA
Slew Rate	SR			1.1		V/µs
Gain-Bandwidth Product	GBW			1.7		MHz

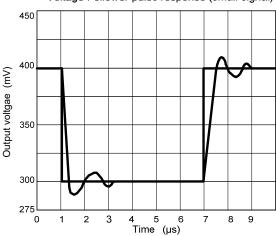

■ TYPICAL CHARACTERISTICS







■ TYPICAL CHARACTERISTICS (Cont.)


Large Signal Frequency Response

Output Characteristics Current Sourcing

Voltage Follower pulse response (small signal)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.