

UNISONIC TECHNOLOGIES CO., LTD

ULV6002

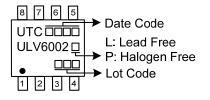
LOW POWER RAIL TO RAIL INPUT / OUTPUT DUAL OP AMP

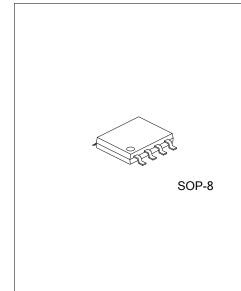
DESCRIPTION

The UTC **ULV6002** of operational amplifiers (op amps) with low operational voltage (1.8V, min.) is specifically designed for general-purpose applications. This amplifier will draw 150 μ A (typ.) quiescent current when the single supply voltage is as low as 1.8V. It also has a power supply range of 1.8V to 5.5V. Additionally, the UTC **ULV6002** supports rail-to-rail input and output swing, with a common mode input voltage range of V_{DD} +300mV to V_{SS} -300mV.

The UTC **ULV6002** is available in the industrial and extended temperature ranges.

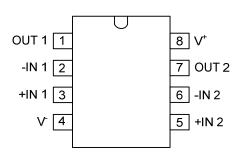
FEATURES


- * Supply Voltage: 1.8~5.5V
- * Supply Current/Amplifier: 315µA (Max.)
- * Input Offset Voltage: 7mV (Max.)
- * Rail-to-Rail Input and Output
- * Slew Rate: 1.1V/µs (Typ.)

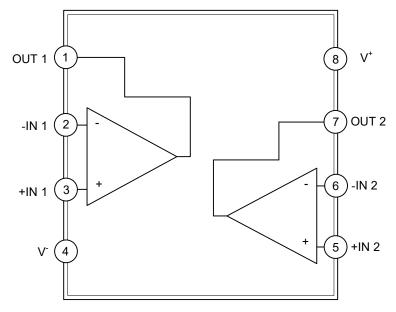

ORDERING INFORMATION

Ordering Number	Deekege	Docking	
Lead Free Halogen Free	Package	Packing	
ULV6002L-S08-R ULV6002G-S08-R	SOP-8	Tape Reel	

ULV6002G-S08-R		
	(1)Packing Type	(1) R: Tape Reel
	(2)Package Type	(2) S08: SOP-8
	(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free


MARKING

ULV6002


■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT 1	Output of 1 AMP
2	-IN 1	Inverting Input of 1 AMP
3	+IN 1	Non-inverting input of 1 AMP
4	V-	Negative power supply
5	+IN 2	Non-inverting input of 2 AMP
6	-IN 2	Inverting input of 2 AMP
7	OUT 2	Output of 2 AMP
8	V ⁺	Positive power supply

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

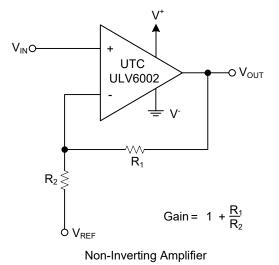
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage, V⁺ to V⁻	Vs	7	V
Input Common Mode Voltage Range	Vcm	V⁻ -0.3 ~ V⁺ +0.3	V
Junction Temperature	TJ	+150	С°
Storage Temperature Range	Tstg	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

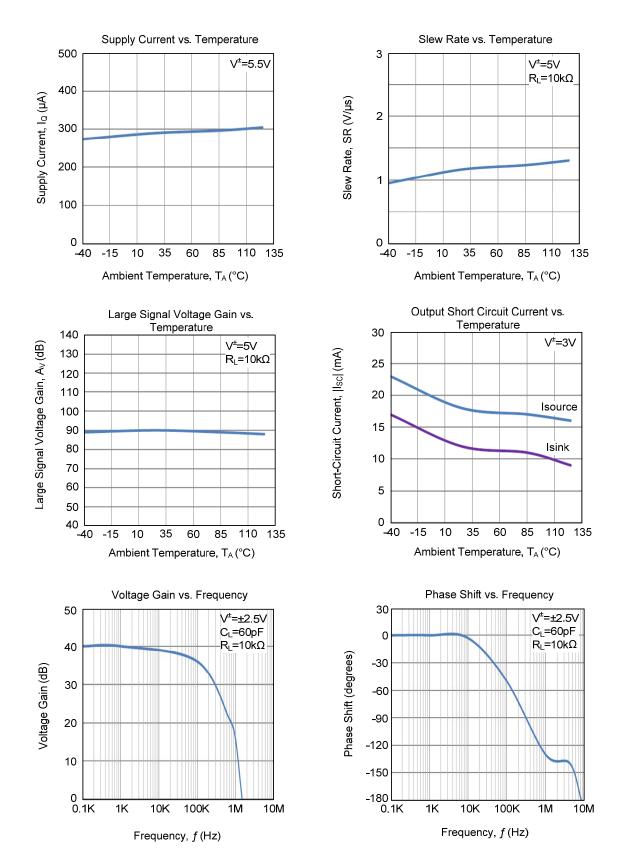
Over operating free-air temperature range (Unless otherwise specified)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V+ - V-	1.8		5.5	V
Operating Free-Air Temperature	T _{OPR}	-40		+125	°C


ELECTRICAL CHARACTERISTICS

 $(V_s$ =+1.8V~+5.5V, V_{CM}=V_S/2, R_L=10kΩ, and V_{OUT} ≈ V_S/2, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIO	NS	MIN	TYP	MAX	UNIT
Supply Current/Amplifier	lq	I ₀ =0, V _s =5.5V			160	315	μA
Power Supply Rejection Ratio	PSRR	V _{CM} =V ⁻			76		dB
Input Offset Voltage	Vos					7	mV
Input Bias Current	lв				±1.0		pА
Input Offset Current	los				±1.0		pА
Common-Mode Voltage Range	Vcm			V⁻-0.3		V++0.3	V
Common-Mode Rejection Ratio	CMRR	V _{CM} =-0.3V~5.3V, V⁺=5V		60	76		dB
Large Signal Voltage Gain	Av	Vo=0.3V~V+-0.3V	<u>.</u>	80			dB
	Vo	RL=10kΩ	Vон	V+-0.1			V
Output Voltage			Vol			V⁻+0.1	V
Short-Circuit Current	120	Sourcing			18		mA
		Sinking			12		mA
Slew Rate	SR				1.1		V/µs
Gain-Bandwidth Product	GBW				1.5		MHz
Input Voltage Noise Density	en	f=1kHz			30		nV/ √Hz


TYPICAL APPLICATION CIRCUIT

ULV6002

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

