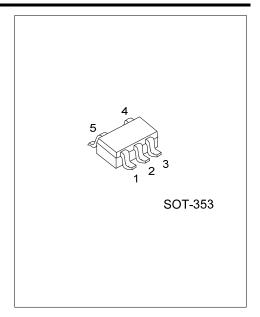


UTC UNISONIC TECHNOLOGIES CO., LTD

LV8541 **CMOS IC**


1MHz RAIL-TO-RAIL I/O CMOS SINGLE AMP

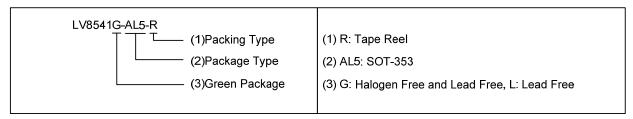
DESCRIPTION

The UTC LV8541 is a low cost rail to rail input and output dual OP AMP, Features in a wide input common-mode voltage range and output voltage swing. The minimum operating supply voltage down to 2.1V and the maximum recommended supply voltage is 5.5V. The operating temperature range extended -40°C to +125°C.

UTC LV8541 suit for piezoelectric sensors, integrators, and photodiode amplifiers. Rail-to-rail inputs and outputs are useful to design buffering ASIC in single-supply systems.

The common applications for this device especially in very low power systems such as safety monitoring, portable equipment.

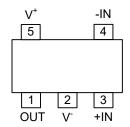
FEATURES


* Operating voltage range: 2.1 V ~ 5.5 V * Supply Current/Amplifier: 120 µA (Max.)

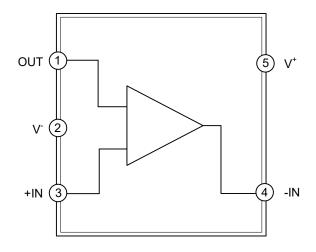
* Low offset voltage: ±3.5 mV (Max.)

* Rail-to-Rail Input and Output * Slew Rate: 0.6 V/µs (Typ.)

ORDERING INFORMATION


Ordering Number		Dealeana	Dealting	
Lead Free	Halogen Free	Package	Packing	
LV8541L-AL5-R	LV8541G-AL5-R	SOT-353	Tape Reel	

MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	OUT	Output		
2	V-	Negative power supply		
3	+IN	Non-inverting input		
4	-IN	Inverting input		
5	V ⁺	Positive power supply		

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (NOTE 1)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	(V+ - V-)	7	V
Differential Input Voltage	V _{ID}	Supply Voltage	
Junction Temperature (Note 3)	Тл	+150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Applies to both single-supply and split-supply operation. Continuous short circuit operation at elevated ambient temperature can result in exceeding the maximum allowed junction temperature of 150°C. Output currents in excess of 45mA over long term may adversely affect reliability.
- 3. The maximum power dissipation is a function of $T_{J(max)}$, θ_{JA} , and T_A . The maximum allowable power dissipation at any ambient temperature is $P_D = (T_{J(max)} T_A)/\theta_{JA}$. All numbers apply for packages soldered directly into a PC board.

■ RECOMMENDED OPWRAING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V+ - V-	2.1 ~ 5.5	V
Operating Free-Air Temperature	T _{OPR}	-40 ~ +125	°C

■ ELECTRICAL CHARACTERISTICS

 $(V_S=+5V, R_L=100k\Omega, and V_{OUT}=V_S / 2, T_A=25^{\circ}C, unless otherwise specified.)$

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Current/Amplifier	ΙQ	I _{OUT} =0			58	120	μΑ
Power Supply Rejection Ratio	PSRR	V_S =+2.5 $V \sim$ +5.5 V V_{CM} =(- V_S)+0.5 V		76	92		dB
Input Offset Voltage	Vos					±3.5	mV
Input Bias Current	lΒ				1		pА
Input Offset Current	los				1		pА
Common-Mode Voltage Range	V _{CM}	V _S =5.5V		-0.1		5.6	V
Common Mode Rejection Ratio	CMRR	V _S =5.5V, V _{CM} =-0.1V ~ 5.6	6V	60	85		dB
Large Signal Voltage Gain	Av	R _L =5kΩ,V _O = 0.1V ~0.5V		80	98		dB
O. d d. V lb	Vo	R _L =100kΩ	Vон		4.994		V
Output Voltage			V_{OL}		0.005		V
Short-Circuit Current	I _{SC}	Sourcing, Vo=0V		20	60		mA
		Sinking, V ₀ = V ⁺		20	60		mA
Slew Rate	SR	G=+1, 2V Output Step			0.6		V/µs
Gain-Bandwidth Product	GBW				0.7		MHz
Input-Referred Voltage Noise	e _n	f=1kHz			27		nV/√Hz
		f=10kHz			20		nV/√Hz

TYPICAL APPLICATION CIRCUIT

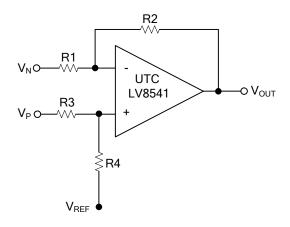


Figure 1. Differential Amplifier

Note: Figure 1 is the differential amplifier. V_{OUT}=(V_P-V_N)×R2/R1+Vref (when R4/R3=R2/R1).

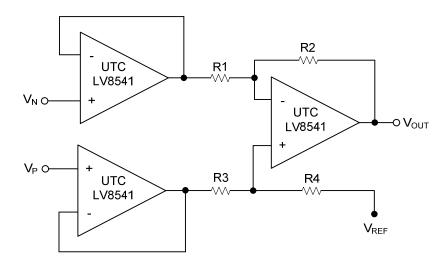
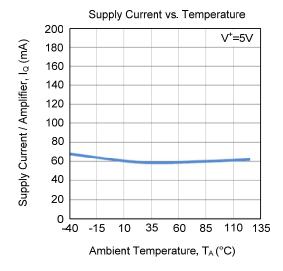
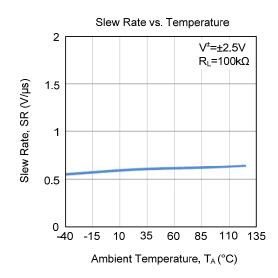
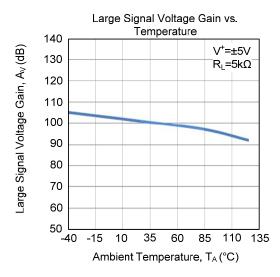


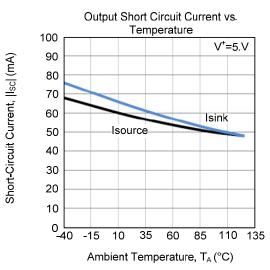
Figure 2. Instrumentation Amplifier

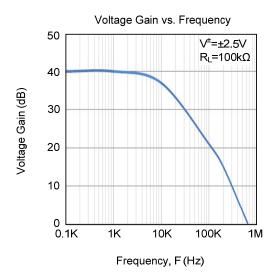
Note: The circuit in Figure 2 performs the same function as that in Figure 1 but with the high input impedance.

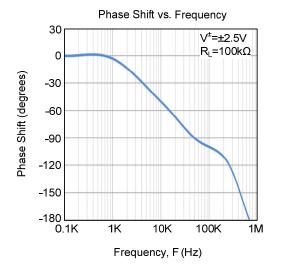
■ TYPICAL APPLICATION CIRCUIT (Cont.)


Figure 3. Low Pass Active Filter


Note: Figure 3 is the low pass filter. It's DC gain is -R2/R1 and the -3dB corner frequency is $1/2\pi R_2 C$.


■ TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.