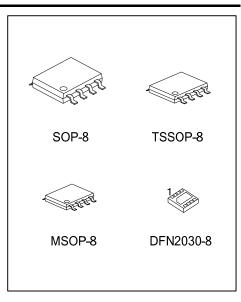


UNISONIC TECHNOLOGIES CO., LTD

LV358S

LINEAR INTEGRATED CIRCUIT

GENERAL PURPOSE, LOW VOLTAGE, RAIL-TO-RAIL **OUTPUT OPERATIONAL AMPLIFIERS**


DESCRIPTION

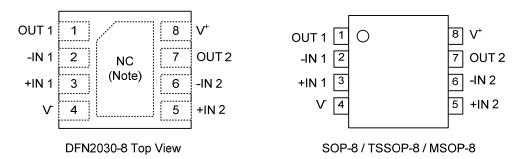
The UTC LV358S is a dual op amp with low supply current and low voltage (2.7-5.5V). It brings nice performance to low voltage and low power systems. With a 1MHz unity-gain frequency. The UTC LV358S has a guaranteed 1 V/µs slew rate and low supply current. It provides heavy rail-to-rail (R-to-R) output swing loads and the input common-mode voltage range including ground. Besides, it is also capable for comfortably driving large capacitive loads.

The UTC LV358S has bipolar input and CMOS output for improved noise performance and higher output current drive. It's the most cost effective solution for the applications where low voltage operation, space saving and low price are required.

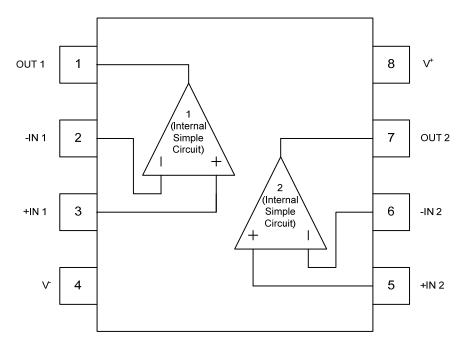

FEATURES

- * Supply Voltage: 2.7~5.5V
- * Supply current: 95µA / Amplifier (Typ.)
- * Input Offset Voltage: 7mV (Max.)
- * Rail-to-Rail outputs
- * Slew Rate 1.0V/µs(Typ.)

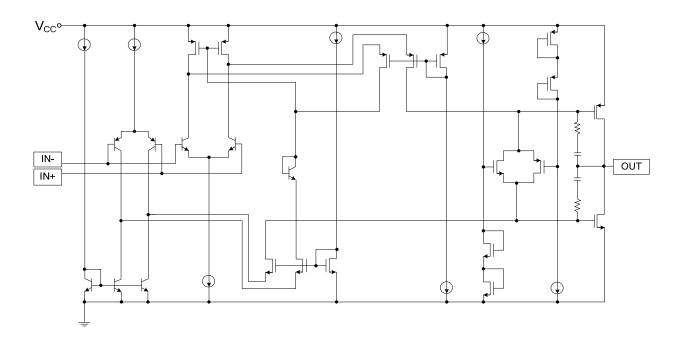
ORDERING INFORMATION


Ordering Number		Dookogo	Dooking	
Lead Free	Halogen Free	Package	Packing	
LV358SL-S08-R	LV358SG-S08-R	SOP-8	Tape Reel	
LV358SL-SM1-R	LV358SG-SM1-R	MSOP-8	Tape Reel	
LV358SL-P08-R	LV358SG-P08-R	TSSOP-8	Tape Reel	
LV358SL-K08-2030-R	LV358SG-K08-2030-R	DFN2030-8	Tape Reel	

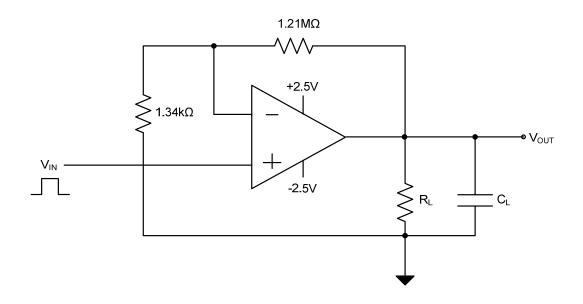
■ MARKING


PACKAGE	MARKING				
SOP-8 / MSOP-8	Date Code UTC CODE LV358S CHAlogen Free Lot Code				
TSSOP-8	UTC DDD 8 7 Date Code L: Lead Free G: Halogen Free Lot Code				
DFN2030-8	LV 358S •□□□□ Date Code				

PIN CONFIGURATION



Note: No connect.


■ BLOCK DIAGRAM

■ INTERNAL SIMPLE CIRCUIT

■ TEST CIRCUIT FOR STABILITY VS CAPACITIVE LOAD

■ ABSOLUTE MAXIMUM RATINGS (Note1)

PARAMETER	SYMBOL	L RATINGS		
Supply Voltage	V+ - V-	2.7 ~ 5.5	V	
Supply Voltage (V ⁺ - V ⁻)	V+ - V-	5.5	V	
Differential Input Voltage		±Supply Voltage		
Junction Temperature	TJ	+150	Ŝ	
Operation Temperature	Topr	-40~+85	Ŝ	
Storage Temperature	T _{STG}	-65~+150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Thermal Resistance (Note 1)	SOP-8		210	°C/W
	MSOP-8	θ _{JA}	260	°C/W
	TSSOP-8		170	°C/W
	DFN2030-8		70	°C/W

Note: All numbers are typical, and apply for packages soldered directly note a PC board is still air.

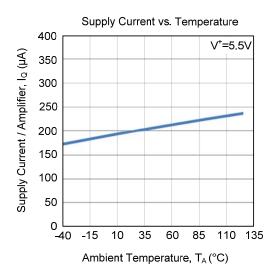
■ 2.7V ELECTRICAL CHARACTERISTICS

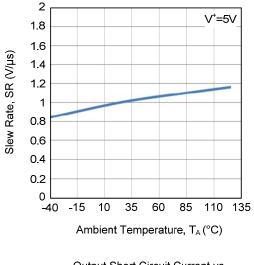
 $(T_A=25^{\circ}C, V^{+}=2.7V, V^{-}=0V, V_{CM}=1.0V)$ and $R_L > 1M\Omega$, unless otherwise specified)

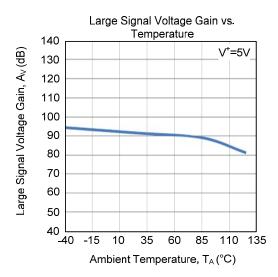
(1A 20 0, V 2:7 V, V 0V, VCIVI	1.0 T and It	TIVISZ, GITIOGO OTTIOI WIGO OPOO				
PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT
DC CHARACTERISTICS	_				-	
Supply Current/Amplifier	Iq			80	170	μΑ
Power Supply Rejection Ratio	PSRR	2.7V≤V ⁺ ≤5V, V _{OUT} =1V	50	72		dB
Input Offset Voltage	Vos			0.65	7	mV
Input Offset Voltage Average Drift				5		μV/°C
Input Bias Current	lΒ			11		nA
Input Offset Current	los			5		nA
Common-mode Voltage Range		E OMBRESO IR	0	-0.2		V
	V _{CM}	For CMRR≥50dB		1.9	1.7	V
Common-Mode Rejection Ratio	CMRR	0V≤V _{CM} ≤1.7V	50	75		dB
Outro & Coding		R _L =10kΩ to 1.35V	V+-100	V+-10		mV
Output Swing	Vo			60	180	mV
AC CHARACTERISTICS						
Gain Bandwidth Product	GBW	C _L =200pF		1		MHz
Phase Margin	ФМ			60		Deg
Gain Margin	Gm			10		dB
Input Referred Voltage Noise	en	F=1KHz		46		$\sqrt{\frac{\text{nV}}{\text{Hz}}}$
Input Referred Current Noise	i _n	F=1KHz		0.17		<u>pA</u> √ Hz

■ 5V ELECTRICAL CHARACTERISTICS

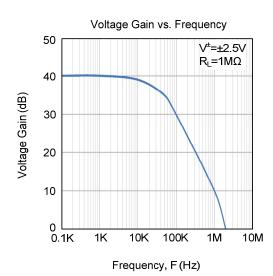
 $(T_A=25^{\circ}C, V^+=5.0V, V^-=0V, V_{CM}=1.0V)$ and $R_L > 1M\Omega$, unless otherwise specified)

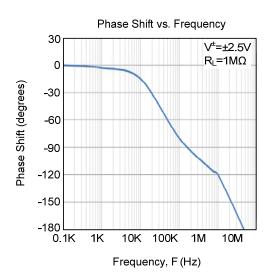

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNIT	
DC CHARACTERISTICS	•			•			
Supply Current/Amplifier	Iq				95	220	μA
Power Supply Rejection Ratio	PSRR	2.7V≤V⁺≤5V V _{OUT} =1V, V _{CM} =1V		50	72		dB
Input Offset Voltage	Vos				0.65	7	mV
Input Offset Voltage Average Drift					5		μV/°C
Input Bias Current	lΒ				15		nA
Input Offset Current	los				5		nA
Input Common-Mode Voltage Range		Far CMDD>504D		0	-0.2		V
	Vсм	For CMRR≥50dB			4.2	4	V
Common-Mode Rejection Ratio	CMRR	0V≤V _{CM} ≤4V		50	75		dB
Large Signal Voltage Gain(Note 1)	Av	R _L =2KΩ		80	100		dB
		R _L =2KΩ to2.5V	Vон	V+-300	V+-40		mV
Output Swing	Vo	RL-2K12 (02.5V	Vol		120	300	mV
Output Swing		R _L =10KΩ to 2.5V	Vон	V+-100	V+-10		mV
		RL-10KQ to 2.5V	V_{OL}		65	180	mV
Output Short Circuit Current	1	Sourcing, V _{OUT} =0V		5	120		mA
Output Short Circuit Current	Isc	Sinking, V _{OUT} =5V	10	100		mA	
AC CHARACTERISTICS							
Slew Rate	SR	(Note 2)			1		V/µs
Gain Bandwidth Product	GBW	C _L =200pF			1		MHz
Phase Margin	Фм				60		Deg
Gain Margin	Gm				10		dB
Input Referred Voltage Noise	en	f=1KHz			39		<u>nV</u> √ Hz
Input Referred Current Noise	İn	f=1KHz			0.21		<u>pA</u> √ Hz


Notes: 1. R_L is connected to V^- . The output voltage is $0.5V \le V_{OUT} \le 4.5V$.


^{2.} Connected as voltage follower with 3V step input. Number specified is these lower of the positive and negative slew rates.

Slew Rate vs. Temperature


■ TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.