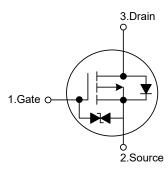


UNISONIC TECHNOLOGIES CO., LTD

UT03P02VZ Preliminary Power MOSFET

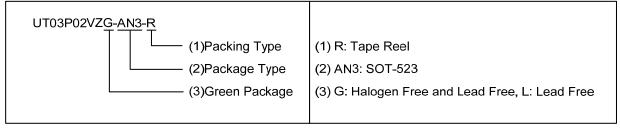
-0.3A, -20V P-CHANNEL LOGIC LEVEL ENHANCEMENT MODE

■ DESCRIPTION


The **UT03P02VZ** employs advanced MOSFET technology and features low gate charge while maintaining low on-resistance.

Optimized for switching applications, this device improves the overall efficiency of DC/DC converters and allows operation to higher switching frequencies.

- * $R_{DS(ON)} \le 1.2 \Omega$ @ V_{GS} = -4.5V, I_{D} = -0.2A $R_{DS(ON)} \le 1.9 \Omega$ @ V_{GS} = -2.5V, I_{D} = -0.1A $R_{DS(ON)} \le 3.5 \Omega$ @ V_{GS} = -1.8V, I_{D} = -0.1A
- * Low Capacitance
- * Low Gate Charge
- * Fast Switching Capability
- * Avalanche Energy Specified


■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Daakana	Pin Assignment			Da alsimon	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UT03P02VZL-AN3-R	UT03P02VZG-AN3-R	SOT-523	G	S	D	Tape Reel	

Note: Pin Assignment: G: Gate S: Source D: Drain

<u>www.unisonic.com.tw</u> 1 of 7

SOT-523

■ MARKING

■ ABSOLUTE MAXIMUM RATINGS (T_C=25°C, unless otherwise specified)

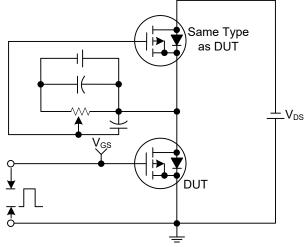
PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V_{DSS}	-20	V	
Gate-Source Voltage		V_{GSS}	±10	V	
Continuous Drain Current	DC		-0.3	Α	
	Pulse	ID	-0.6	Α	
Power Dissipation		P_D	0.15	W	
Junction Temperature		TJ	+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θја	833 (Note)	°C/W

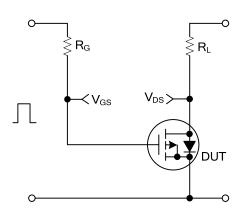
Note: Device mounted on FR-4 substrate Pc board, 2oz copper, with 1inch square copper plate.

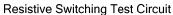

■ **ELECTRICAL CHARACTERISTICS** (T_J=25°C, unless otherwise specified)

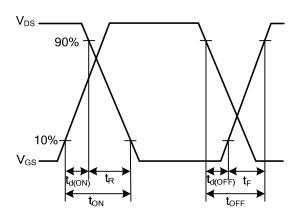
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
OFF CHARACTERISTICS								
Drain-Source Breakdown Voltage	BV_DSS	V _{GS} =0V, I _D =-250µA	-20			V		
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-20V, V _{GS} =0V			-1	μΑ		
Gate–Body Leakage, Forward	Igss	V _{DS} =0V, V _{GS} =±10V			±10	μΑ		
ON CHARACTERISTICS (Note)								
Gate-Threshold Voltage	$V_{GS(TH)}$	V _{DS} =V _{GS} , I _D =-250µA	-0.5		-1.5	V		
	Rds(on)	V _{GS} =-4.5V, I _D =-0.2A			1.2	Ω		
Static Drain–Source On–Resistance		V _{GS} =-2.5V, I _D =-0.1A			1.9	Ω		
		V _{GS} =-1.8V, I _D =-0.1A			3.5	Ω		
DYNAMIC PARAMETERS								
Input Capacitance	C _{ISS}	\		31		pF		
Output Capacitance	Coss	V _{DS} =-10V, V _{GS} =0V, f=1MHz (Note 1, 2)		15		pF		
Reverse Transfer Capacitance	C_{RSS}	(Note 1, 2)		8		pF		
SWITCHING PARAMETERS (Note)								
Total Gate Charge (Note 1)	Q_{G}	\ - 40\\ \\ - 40\\ \ \ - 0.2A		6		nC		
Gate to Source Charge	Q_GS	V _{DS} =-16V, V _{GS} =-10V, I _D =-0.3A (Note 1, 2)		0.67		nC		
Gate to Drain Charge	Q_GD	(Note 1, 2)		0.47		nC		
Turn-ON Delay Time	$t_{D(ON)}$			4.4		ns		
Turn-ON Rise Time	t_R	V_{DD} =-15V, V_{GS} =-10V, I_{D} =-0.3A,		17.3		ns		
Turn-OFF Delay Time	t _{D(OFF)}	$R_G=3\Omega$		88		ns		
Turn-OFF Fall-Time	t_{F}			42.2		ns		
SOURCE- DRAIN DIODE RATINGS AND CHARACTERISTICS								
Max. Diode Forward Current	Is				-0.3	Α		
Drain-Source Diode Forward Voltage	V_{SD}	V _{GS} = 0V, I _S =-0.3A (Note)		-0.8	-1.4	V		

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

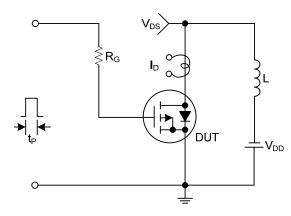
2. Essentially independent of operating temperature.

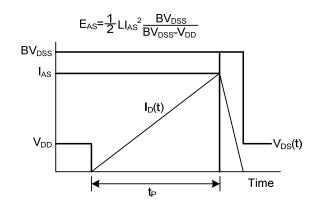

■ TEST CIRCUITS AND WAVEFORMS




 V_{G} V_{GS} Q_{G} Q_{GD} Q_{GD} Q_{GD}

Gate Charge Test Circuit


Gate Charge Waveforms



Resistive Switching Waveforms

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

