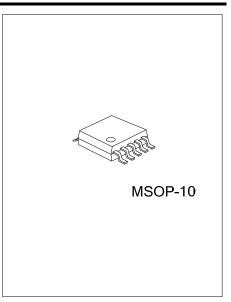


UNISONIC TECHNOLOGIES CO., LTD

LV712 CMOS IC

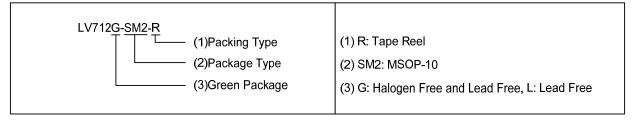

RAIL-TO-RAIL, DUAL RRIO OPERATIONAL WITH INDEPENDENT SHUTDOWN

DESCRIPTION

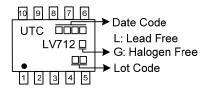
The UTC LV712 duals are high performance BiCMOS operational amplifiers intended for applications requiring Rail-to-Rail inputs combined with speed and low noise. They offer a bandwidth of 4MHz and a slew rate of 4.5 V/µs.

The UTC LV712 is guaranteed to operate from 2.7V to 5.5V and offers two independent shutdown pins. This feature allows disabling of each device separately and reduces the supply current to less than 0.8µA (typ.). The output voltage rapidly ramps up smoothly with no glitch as the amplifier comes out of the shutdown mode.

The UTC LV712 offered in 10-Pin MSOP package. The package are designed to meet the demands of small size, low power, and low cost required by cellular phones and similar battery operated portable electronics.

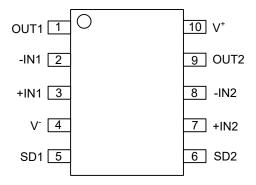


FEATURES


- * Supply Voltage: 2.7~5V
- * Supply current 1.3mA/ amplifier (Typ.)
- * Shutdown Current: 0.8µA (Typ.)
- * Input Offset Voltage: 3mV (Max.)
- * Rail-to-Rail inputs and outputs
- * Slew Rate 4.5V/µs(Typ.)

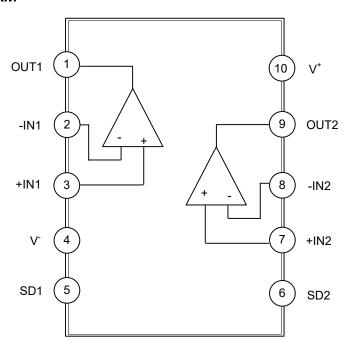
ORDERING INFORMATION

Ordering Number		Deekees	De alcie e	
Lead Free	Halogen Free	Package	Packing	
LV712L-SM2-R	LV712G-SM2-R	MSOP-10	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 7


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUT1	Output of A AMP
2	-IN1	Inverting Input of 1 AMP
3	+IN1	Non-inverting input of 1 AMP
4	V-	Negative power supply
5	SD1	Active low enable input of 1 AMP
6	SD2	Active low enable input of 2 AMP
7	+IN2	Non-inverting input of 2 AMP
8	-IN2	Inverting input of 2 AMP
9	OUT2	Output of 2 AMP
10	V ⁺	Positive power supply

■ BLOCK DIAGRAM

LV712

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

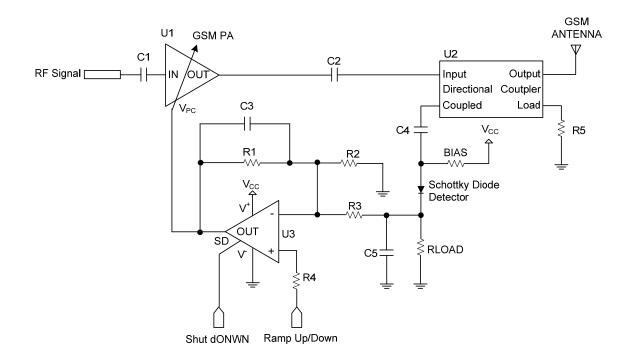
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ - V ⁻	6.0	V
Differential Input Voltage		±Supply Voltage	
Voltage at Input/Output Pin		V^{+} - 0.4 ~ V^{-} + 0.4	V
Current at Input Pin		±10	mA
Current at Output Pin		±50	mA
Storage Temperature	T _{STG}	-65 ~ +150	°C
Junction Temperature	TJ	+150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

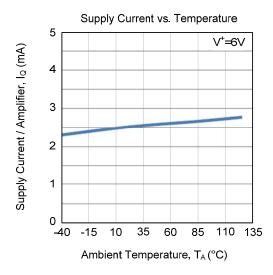
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θја	258	°C/W

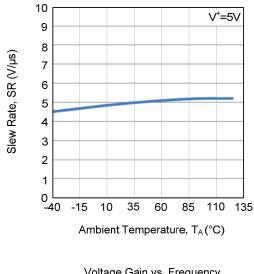
■ RECOMMENDED OPWRAING CONDITIONS

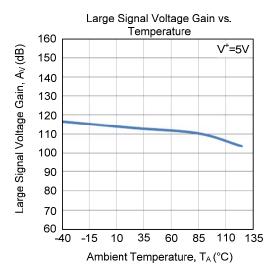

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V+ - V-	2.7 ~ 5.5	V
Operating Free-Air Temperature	Topr	-40 ~ +125	°C

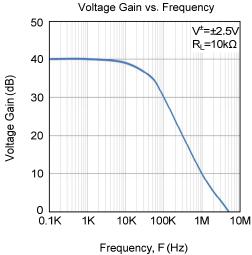
■ ELECTRICAL CHARACTERISTICS

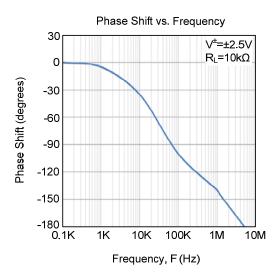
(V⁺ = +2.7 \sim +5.0V, V⁻ = 0V, V_{CM} = V⁺/2 and R_L > 1M Ω , T_A=25 $^{\circ}$ C, unless otherwise specified)


PARAMETER	SYMBOL			MIN	TYP	MAX	UNIT
TANAMETER	STWIDOL	TEST CONDITIONS		IVIIIN		1.7	
Supply Current/Amplifier	IQ	On Mode Shutdown Mode			1.3		mA
				70	0.8	1.5	uA
Power Supply Rejection Ratio	PSRR		≤5V, V _{CM} = 0.85V	70 70	90		dB
Innut Offert Velters		2.7V ≤ V ⁺ ≤5V, V _{CM} = 1.85V V _{CM} = 0.85V and V _{CM} = 1.85V		70	90	_	dB
Input Offset Voltage	Vos	V _{CM} = 0.85	v and v _{CM} = 1.85v		0.1	3	mV
Input Bias Current	I _B	1		0.0	5.5	V++0.2	pA V
Common-mode Voltage Range	V _{CM}	0) / 4) /	0.717	-0.2	7.5	V*+0.2	-
Common-Mode Rejection Ratio	CMRR	0V ≤V _{CM} ≤	2.7V	50	75		dB
Large Signal Voltage Gain	Av	Sourcing R_L = 10k Ω , V_O = 1.35V to 2.3V		80	115		dB
		Sinking R_L = 10k Ω , V_O = 0.4V to 1.35V		80	115		dB
		Sourcing $R_L = 600\Omega$, $V_O = 1.35V$ to 2.2V		80	95		dB
		Sinking R _L = 600Ω	Vo= 0.5V to 1.35V	80	95		dB
Output Voltage	Vo		$R_{L=}$ 10kΩ to 1.35V, V_{OH}	2.62	2.64		V
		V+ = 2.7V	$R_{L=}$ 10k Ω to 1.35V, V_{OL}		0.01	0.12	V
		V+ = 5.0V	R_L = 600Ω to 1.35V, V_{OH}	2.52	2.55		V
			R _L = 600Ω to 1.35 V, V _{OL}		0.05	0.23	V
			R _{L=} 10kΩ to 2.5V, V _{OH}	4.9	4.92		V
			$R_{L=}$ 10k Ω to 2.5V, V_{OL}		0.01	0.12	V
			R _L = 600Ω to $2.5V$, V _{OH}	4.8	4.83		V
			$R_{L=}$ 10k Ω to 2.5V, V_{OL}		0.0.5	0.23	V
Output Voltage in Shutdown	Vo(SD)	1	1		50	200	mV
	lsc	\/+ = 2 7\/	Sourcing V ₀ = 0V Sinking V ₀ = 2.7V	15	60		mA
Short-Circuit Current		v - Z.1 V	Sinking V ₀ = 2.7V	25	55		mA
		V+ = 5.0V	Sourcing V ₀ = 0V	20	75		mA
		v – J.UV	Sinking V ₀ = 5.0V	25	70		mA
Slew Rate	SR				4.5		V/µs
Gain-Bandwidth Product	GBW				4		MHz
Phase Margin	ΦМ				50		Deg
Input Referred Voltage Noise	en	f = 1kHz			20		nV/ √Hz
Shutdown Pin Voltage Range	V _{SD}	On Mode		V+-0.5			V
Character in voltage Nange		Shutdown Mode				8.0	V
Turn-On Time from Shutdown	T_ON				2.2	4.6	μs
Turn-On Time from Shutdown	· UN	micro SMD		6			μs


■ TYPICAL APPLICATION CIRCUIT


LV712 cmos ic


■ TYPICAL CHARACTERISTICS



Slew Rate vs. Temperature

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.