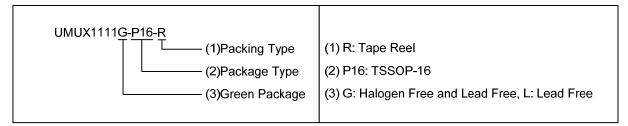


LINEAR INTEGRATED CIRCUIT

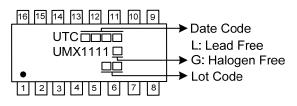
5V, 1:1 (SPST), 4-CHANNEL PRECISION SWITCHES

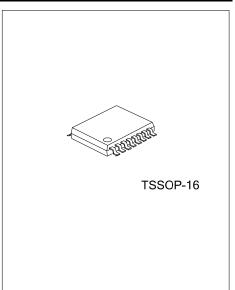
DESCRIPTION

The UTC **UMUX1111** is precision complementary metal-oxide semiconductor (CMOS) device that has four independently selectable single-pole / single-throw (SPST) switch. The device supports bidirectional analog and digital signals on the source (Sx) and drain (Dx) pins ranging from GND to V_{DD} .

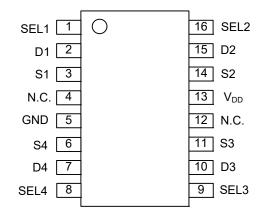

Wide operating supply of 1.08V to 5.5V allows for use in a broad array of applications from medical equipment to industrial systems.

FEATURES


- * 1.8V Logic compatible
- * Wide supply range: 1.08V ~ 5.5V
- * Rail to rail operation
- * Fail-safe logic
- * Bidirectional signal path
- * Break-before-make switching


ORDERING INFORMATION

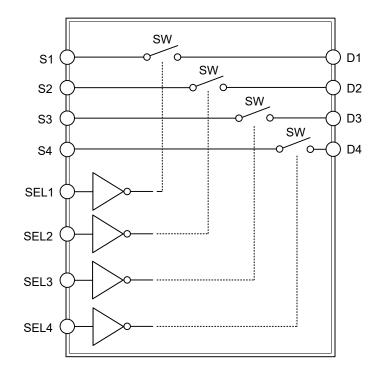
Ordering	Number	Dookogo	Dealing
Lead Free	Halogen Free	Package	Packing
UMUX1111L-P16-R	UMUX1111G-P16-R	TSSOP-16	Tape Reel



MARKING

PIN CONFIGURATION

PIN DESCRIPTION


PIN NO.	PIN NAME	DESCRIPTION
1	SEL1	Logic control input 1
2	D1	Drain pin 1. Can be an input or output
3	S1	Source pin 1. Can be an input or output
4	N.C.	No internal connection
5	GND	Ground (0 V) reference
6	S4	Source pin 4. Can be an input or output
7	D4	Drain pin 4. Can be an input or output
8	SEL4	Logic control input 4
9	SEL3	Logic control input 3
10	D3	Drain pin 3. Can be an input or output
11	S3	Source pin 3. Can be an input or output
12	N.C.	No internal connection
13	V _{DD}	Positive power supply
14	S2	Source pin 2. Can be an input or output
15	D2	Drain pin 2. Can be an input or output
16	SEL2	Logic control input 2

TRUTH TABLES

SELx	STATE
0	Channels ON
1	Channels OFF

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{DD}	-0.5 ~ 6	V
Logic Control Input pin Voltage (SELx)	V _{SEL}	-0.5 ~ 6	V
Logic Control Input pin Current (SELx)	I _{SEL}	±30	mA
Source or Drain Voltage (Sx, D)	V_S or V_D	-0.5 ~ V _{DD} +0.5	V
Source or Drain Continuous Current (Sx, D)	Is or I _{D (CONT)}	±30	mA
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Positive Power Supply Voltage	V _{DD}	1.08		5.5	V
Signal Path Input/Output Voltage (Source or Drain Pin) (Sx, D)	$V_{\text{S}} \text{or} V_{\text{D}}$	0		V _{DD}	V
Logic Control Input Pin Voltage (SELx)	VSEL	0		5.5	V
Ambient Temperature	T _A	-40		+125	°C

■ ELECTRICAL CHARACTERISTICS (V_{DD} = 5V ±10%, T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
ANALOG SWITCH							
		$V_{\rm S} = 0V \sim V_{\rm DD}$	T _A =25°C		4	9.2	Ω
On-Resistance	Ron	I _{SD} =10mA Refer to On-Resistance	T _A =-40°C~+125°C			10.1	Ω
On-Resistance Matching		$V_{\rm S} = 0V \sim V_{\rm DD}$	T _A =25°C		0.2		Ω
between Channels	ΔRon	I _{SD} = 10mA Refer to On-Resistance	T _A =-40°C~+125°C			0.5	Ω
	Ron	$V_{\rm S} = 0V \sim V_{\rm DD}$	T _A =25°C		0.85		Ω
On-Resistance Flatness	FLAT	I _{SD} = 10mA Refer to On-Resistance	T _A =-40°C~+125°C		2		Ω
Source Off Leakage Current		$V_{DD} = 5V$, Switch Off $V_D = 4.5V / 1.5V$	T _A =25°C	-100	±20	100	nA
(Note 1)	I _{S(OFF)}	V _S = 1.5V / 4.5V Refer to Off-Leakage Current	T _A =-40°C~+125°C	-200		200	nA
Drain Off Leakage Current		$V_{DD} = 5V$, Switch Off $V_D = 4.5V / 1.5V$	T _A =25°C	-100	±20	100	nA
(Note 1)	I _{D(OFF)}	V _S = 1.5V / 4.5V Refer to Off-Leakage Current	T _A =-40°C~+125°C	-200		200	nA
	I _{D(ON)}	V_{DD} = 5V, Switch On V_{D} =V _S =4.5V/1.5V	T _A =25°C	-100	±30	100	nA
Channel On Leakage Current	I _{S(ON)}	Refer to On-Leakage Current	T _A =-40°C~+125°C	-500		500	nA
LOGIC INPUTS (SELx)							
Input Logic High	VIH	T _A =-40°C~+125°C		1.49		5.5	V
Input Logic Low	VIL	T _A =-40°C~+125°C		0		0.87	V
Input Leakage Current	I _{IH} , I _{IL}	T _A =25°C			±0.05		μA
Input Leakage Current	Iı∺, Iı∟	T _A =-40°C~+125°C				±0.5	μA
Logic Input Capacitance	CIN	T _A =25°C			1		pF

LINEAR INTEGRATED CIRCUIT

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
POWER SUPPLY							
V Original Comment		Logic Inputs = 0V or	T _A =25°C		0.009		μA
V _{DD} Supply Current	IDD	5.5V	T _A =-40°C~+125°C			1	μA
DYNAMIC CHARACTERISTIC	S						
Transition Time between		Vs = 3V	T _A =25°C		12		ns
Channels	t _{tran}	$R_L = 200\Omega$, $C_L = 15pF$ Refer to Transition Time	T _A =-40°C~+125°C			18	ns
Charge Injection	Qc	Vs = 1V, Rs = 0Ω, C∟ = 1nF, Refer to Charg T _A =25°C	e Injection,		1.5		рС
Off Isolation		$R_L = 50\Omega$, $C_L = 5pF$ f = 1MHz, Refer to Off isolation, $T_A = 25^{\circ}C$			-55		dB
On Isolation	Oiso	$R_L = 50\Omega$, $C_L = 5pF$ f = 10MHz, Refer to Off isolation $T_A = 25^{\circ}C$			-35		dB
0	X	$R_L = 50\Omega$, $C_L = 5pF$ f = 1MHz, Refer to Chan Crosstalk , $T_A = 25^{\circ}C$	nel-to-Channel		-65		dB
Crosstalk	Xtalk	$R_L = 50\Omega$, $C_L = 5pF$ f = 10MHz, Refer to Char Crosstalk, $T_A = 25^{\circ}C$	nnel-to-Channel		-55		dB
Bandwidth	BW	$R_L = 50\Omega$, $C_L = 5pF$ Refer to Bandwidth, $T_A = 2$	25°C		250		MHz
Source Off Capacitance	CSOFF	f = 1MHz, T _A =25°C			6		pF
Drain Off Capacitance	CDOFF	f = 1MHz, T _A =25°C			10		pF
On Capacitance	C _{SON} C _{DON}	f = 1MHz, T _A =25°C			18		pF

Note: When V_{S} is 4.5V, V_{D} is 1.5V, and vice versa.

■ ELECTRICAL CHARACTERISTICS (V_{DD} = 3.3V ±10%, T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
ANALOG SWITCH						-	
On Desistance	_	$V_{\rm S} = 0V \sim V_{\rm DD}$	T _A =25°C		5.7	11	Ω
On-Resistance	Ron	I _{SD} =10mA Refer to On-Resistance	T _A =-40°C~+125°C			12	Ω
On-Resistance Matching		$V_{\rm S} = 0 V \sim V_{\rm DD}$	T _A =25°C		0.2		Ω
between Channels	ΔRon	I _{SD} = 10mA Refer to On-Resistance	T _A =-40°C~+125°C			0.5	Ω
On Desistance Flatness	Ron	$V_{\rm S} = 0 V \sim V_{\rm DD}$	T _A =25°C		2.2		Ω
On-Resistance Flatness	FLAT	I _{SD} = 10mA Refer to On-Resistance	T _A =-40°C~+125°C		2.5		Ω
Source Off Leakage Current		V_{DD} = 3.3V, Switch Off V_D = 3V / 1V	T _A =25°C	-100	±20	100	nA
(Note 1)	Is(off)	Vs = 1V / 3V Refer to Off-Leakage Current	T _A =-40°C~+125°C	-200		200	nA
Drain Off Leakage Current		V_{DD} = 3.3V, Switch Off V_D = 3V / 1V	T _A =25°C	-100	±20	100	nA
(Note 1)	Id(off)	Vs = 1V / 3V Refer to Off-Leakage Current	T _A =-40°C~+125°C	-200		200	nA

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
ANALOG SWITCH							
Channel On Leakage Current	I _{D(ON)}	V_{DD} = 3.3V, Switch On V_D =V _S =3V/1V	T _A =25°C	-100	±20	100	nA
	I _{S(ON)}	Refer to On-Leakage Current	T _A =-40°C~+125°C	-500		500	nA
LOGIC INPUTS (SELx)	•						•
Input Logic High	VIH	T _A =-40°C~+125°C		1.35		5.5	V
Input Logic Low	VIL	T _A =-40°C~+125°C		0		0.8	V
Input Leakage Current	Iı∺, Iı∟	T _A =25°C			±0.05		μA
Input Leakage Current	I _{IH} , I _{IL}	T _A =-40°C~+125°C				±0.5	μA
Logic Input Capacitance	CIN	T _A =25°C			1		pF
POWER SUPPLY			_				
V Supply Current	1	Logic Inputs = 0V or	T _A =25°C		0.005		μA
V _{DD} Supply Current	IDD	5.5V	T _A =-40°C~+125°C			1	μA
DYNAMIC CHARACTERISTIC	S						
Transition Time between		V _S = 2V	T _A =25°C		14		ns
Channels	t _{tran}	$R_L = 200\Omega$, $C_L = 15pF$ Refer to Transition Time	T _A =-40°C~+125°C			22	ns
Charge Injection	Qc	$V_S = 1V$, $R_S = 0\Omega$, $C_L = 1nF$, Refer to Charg $T_A = 25^{\circ}C$	e Injection,		-1.5		рС
Off Isolation	Oiso	$R_L = 50\Omega$, $C_L = 5pF$ f = 1MHz, Refer to Off iso	plation, T _A =25°C		-55		dB
	Oiso	$R_L = 50\Omega$, $C_L = 5pF$ f = 10MHz, Refer to Off is	solation T _A =25°C		-35		dB
Crosstalk	Xtalk	$R_L = 50\Omega$, $C_L = 5pF$ f = 1MHz, Refer to Chann Crosstalk , $T_A = 25^{\circ}C$	nel-to-Channel		-65		dB
CIUSSIAIK	ATALK	$R_L = 50\Omega$, $C_L = 5pF$ f = 10MHz, Refer to Chai Crosstalk, $T_A = 25^{\circ}C$	nnel-to-Channel		-55		dB
Bandwidth	BW	$R_L = 50\Omega$, $C_L = 5pF$ Refer to Bandwidth, $T_A =$	25°C		250		MHz
Source Off Capacitance	CSOFF	f = 1MHz, T _A =25°C			6		рF
Drain Off Capacitance	CDOFF	f = 1MHz, T _A =25°C			10		pF
On Capacitance	C _{SON} C _{DON}	f = 1MHz, T _A =25°C			18		pF

Note: When V_S is 3V, V_D is 1V, and vice versa.

■ ELECTRICAL CHARACTERISTICS (V_{DD} = 1.8V ±10%, T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
ANALOG SWITCH							
On Desistance		$V_{\rm S} = 0V \sim V_{\rm DD}$	T _A =25°C		40		Ω
On-Resistance	Ron	I _{SD} =10mA Refer to On-Resistance	T _A =-40°C~+125°C			80	Ω
On-Resistance Matching		V _S = 0V ~ V _{DD} I _{SD} = 10mA	T _A =25°C		0.4		Ω
between Channels	ΔR _{on}		T _A =-40°C~+125°C			1.5	Ω

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
ANALOG SWITCH							
Source Off Leakage Current	I _{S(OFF)}	V_{DD} =1.98V, Switch Off V_{D} = 1.62V / 1V V_{S} = 1V /1.62V	T _A =25°C	-100	±5	100	nA
(Note 1)		Refer to Off-Leakage Current	T _A =-40°C~+125°C	-200		200	nA
Drain Off Leakage Current	ID(OFF)	V_{DD} = 1.98V, Switch Off V_{D} = 1.62V / 1V V_{S} = 1V / 1.62V	T _A =25°C	-100	±5	100	nA
(Note 1)	ID(OFF)	Refer to Off-Leakage Current	T _A =-40°C~+125°C	-200		200	nA
Channel On Leakage Current	I _{D(ON)}	V_{DD} = 1.98V, Switch On V_{D} =V _S =1.62V/1V	T _A =25°C	-100	±5	100	nA
	Is(ON)	Refer to On-Leakage Current	T _A =-40°C~+125°C	-500		500	nA
LOGIC INPUTS (SELx)	1	T			1		1
Input Logic High	VIH	T _A =-40°C~+125°C		1.07		5.5	V
Input Logic Low	VIL	T _A =-40°C~+125°C		0		0.68	V
Input Leakage Current	Iih, Iil	T _A =25°C			±0.05		μA
Input Leakage Current	Iıн, Iı∟	T _A =-40°C~+125°C				±0.5	μA
Logic Input Capacitance	CIN	T _A =25°C			1		pF
POWER SUPPLY	1		•	1	r		1
V _{DD} Supply Current	I _{DD}	Logic Inputs = 0V or	T _A =25°C		0.001		μA
		5.5V	T _A =-40°C~+125°C			0.85	μA
DYNAMIC CHARACTERISTIC	S	h	1		1		1
Transition Time between		$V_{\rm S} = 1V$	T _A =25°C		25		ns
Channels	t tran	$R_L = 200\Omega, C_L = 15pF$	T _A =-40°C~+125°C			44	ns
		Refer to Transition Time $V_S = 1V$, $R_S = 0\Omega$,	14 10 0 120 0		-		110
Charge Injection	Qc	$C_L = 1nF$, Refer to Charg $T_A = 25^{\circ}C$	e Injection,		-0.5		рС
Off Isolation	O _{ISO}	$R_L = 50\Omega$, $C_L = 5pF$ f = 1MHz, Refer to Off iso	plation, T _A =25°C		-55		dB
	OISO	$R_L = 50\Omega$, $C_L = 5pF$ f = 10MHz, Refer to Off is	solation T _A =25°C		-35		dB
Omentelly	×	$R_L = 50\Omega$, $C_L = 5pF$ f = 1MHz, Refer to Chann Crosstalk , $T_A = 25^{\circ}C$	nel-to-Channel		-65		dB
Crosstalk	Xtalk	$R_L = 50\Omega$, $C_L = 5pF$ f = 10MHz, Refer to Char Crosstalk, $T_A = 25^{\circ}C$	nnel-to-Channel		-55		dB
Bandwidth	BW	R_L = 50Ω, C_L = 5pF Refer to Bandwidth, T_A =:	25°C		250		MHz
Source Off Capacitance	CSOFF	f = 1MHz, T _A =25°C			6		pF
Drain Off Capacitance	CDOFF	f = 1MHz, T _A =25°C			10		рF
On Capacitance	Cson Cdon	f = 1MHz, T _A =25°C			18		pF

Note: When V_S is 1.62V, V_D is 1V, and vice versa.

LINEAR INTEGRATED CIRCUIT

■ ELECTRICAL CHARACTERISTICS (V_{DD} = 1.2V ±10%, T_A =25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
ANALOG SWITCH		•			•		<u>.</u>
		$V_{\rm S} = 0V \sim V_{\rm DD}$	T _A =25°C		70		Ω
On-Resistance	Ron	I _{SD} =10mA Refer to On-Resistance	T _A =-40°C~+125°C			105	Ω
On Desistence Matching		$V_{\rm S} = 0V \sim V_{\rm DD}$	T _A =25°C		0.4		Ω
On-Resistance Matching between Channels	ΔR_{ON}	I _{SD} = 10mA Refer to On-Resistance	T _A =-40°C~+125°C			1.5	Ω
		V _{DD} =1.32V, Switch Off	T _A =25°C	-100	±5	100	nA
Source Off Leakage Current (Note 1)	Is(off)	V _D = 1V / 0.8V V _S = 0.8V / 1V Refer to Off-Leakage Current	T _A =-40°C~+125°C	-200		200	nA
		V _{DD} = 1.32V, Switch Off	T _A =25°C	-100	±5	100	nA
Drain Off Leakage Current (Note 1)	Id(off)	V _D = 1 V / 0.8V V _s = 0.8V / 1V Refer to Off-Leakage Current	T _A =-40°C~+125°C	-200		200	nA
		V _{DD} = 1.32V, Switch On	T _A =25°C	-100	±5	100	nA
Channel On Leakage Current	I _{D(ON)} Is(on)	V _D =V _S =1V / 0.8V Refer to On-Leakage Current	T _A =-40°C~+125°C	-500		500	nA
LOGIC INPUTS (SELx)							1
Input Logic High	VIH	T _A =-40°C~+125°C		0.96		5.5	V
Input Logic Low	VIL	T _A =-40°C~+125°C		0		0.36	V
Input Leakage Current	Iih, Ii∟	T _A =25°C			±0.05		μA
Input Leakage Current	I _{IH} , I _{IL}	T _A =-40°C~+125°C				±0.5	μA
Logic Input Capacitance	CIN	T _A =25°C			1		pF
POWER SUPPLY							<u>, , , , , , , , , , , , , , , , , , , </u>
V _{DD} Supply Current	IDD	Logic Inputs = 0V or 5.5V	T _A =25°C T _A =-40°C~+125°C		0.001	0.7	μA μA
DYNAMIC CHARACTERISTIC	S				-		
Transition Time between Channels	t _{tran}	$V_{s} = 1V$ $R_{L} = 200\Omega$, $C_{L} = 15pF$ Refer to Transition Time	T _A =25°C T _A =-40°C~+125°C		55	190	ns ns
Charge Injection	Qc	$V_s = 1V$, $R_s = 0\Omega$, $C_L = 1nF$, Refer to Charg $T_A = 25^{\circ}C$	le Injection,		-0.5		рС
		$R_L = 50\Omega$, $C_L = 5pF$ f = 1MHz, Refer to Off iso	plation, T _A =25°C		-55		dB
Off Isolation	Oiso	$R_L = 50\Omega$, $C_L = 5pF$ f = 10MHz, Refer to Off is	solation T _A =25°C		-35		dB
Crosstalk	Xtalk	$R_L = 50\Omega$, $C_L = 5pF$ f = 1MHz, Refer to Channel-to-Channel Crosstalk , $T_A = 25^{\circ}C$			-65		dB
Grosslain	ATALK	$R_L = 50\Omega$, $C_L = 5pF$ f = 10MHz, Refer to Chai Crosstalk, $T_A = 25^{\circ}C$	nnel-to-Channel		-55		dB
Bandwidth	BW	$R_L = 50\Omega$, $C_L = 5pF$ Refer to Bandwidth, $T_A =$	25°C		250		MHz

<u>UMUX1111</u>

LINEAR INTEGRATED CIRCUIT

■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
DYNAMIC CHARACTERISTICS						
Source Off Capacitance	CSOFF	f = 1MHz, T _A =25°C		6		рF
Drain Off Capacitance	CDOFF	f = 1MHz, T _A =25°C		10		рF
On Capacitance	Cson Cdon	f = 1MHz, T _A =25°C		18		pF

Note: When V_{S} is 1V, V_{D} is 0.8V, and vice versa.

PARAMETER MEASUREMENT INFORMATION

1. On-resistance

The on-resistance of a device is the ohmic resistance between the source (Sx) and drain (Dx) pins of the device. The on-resistance varies with input voltage and supply voltage. The symbol R_{ON} is used to denote on-resistance. The measurement setup used to measure R_{ON} is shown in Figure 1. Voltage (V) and current (I_{SD}) are measured using this setup and R_{ON} is computed with $R_{ON} = V / I_{SD}$:

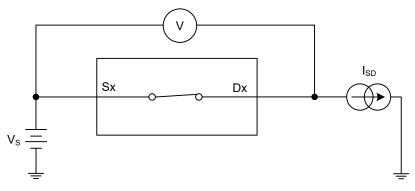


Figure 1. On-Resistance measurement setup

2. Off-leakage current

There are two types of leakage currents associated with a switch during the off state:

1. Source off-leakage current

2. Drain off-leakage current

Source leakage current is defined as the leakage current flowing into or out of the source pin when the switch is off. This current is denoted by the symbol $I_{S(OFF)}$.

Drain leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is off. This current is denoted by the symbol $I_{D(OFF)}$.

The setup used to measure both off-leakage currents is shown in Figure 2.

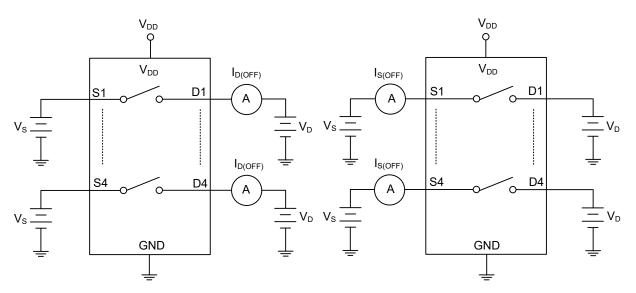


Figure 2. Off-leakage measurement setup

PARAMETER MEASUREMENT INFORMATION (Cont.)

3. On-leakage current

Source on-leakage current is defined as the leakage current flowing into or out of the source pin when the switch is on. This current is denoted by the symbol $I_{S(ON)}$.

Drain on-leakage current is defined as the leakage current flowing into or out of the drain pin when the switch is on. This current is denoted by the symbol $I_{D(ON)}$.

Either the source pin or drain pin is left floating during the measurement. Figure 3 shows the circuit used for measuring the on-leakage current, denoted by $I_{S(ON)}$ or $I_{D(ON)}$.

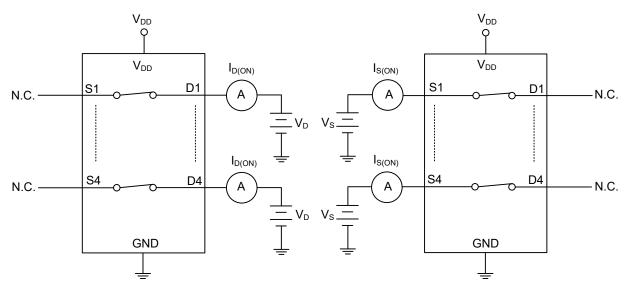
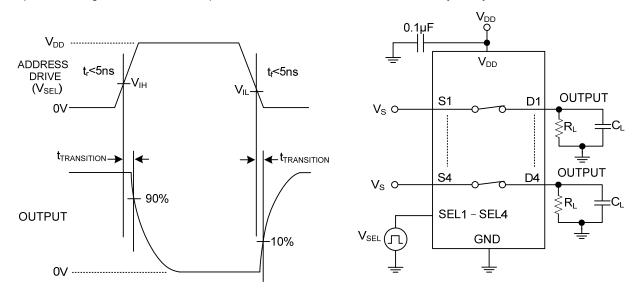



Figure 3. On-leakage measurement setup

4. Transition time

Transition time is defined as the time taken by the output of the device to rise or fall 10% after the address signal has risen or fallen past the logic threshold. The 10% transition measurement is utilized to provide the timing of the device. System level timing can then account for the time constant added from the load resistance and load capacitance. Figure 4 shows the setup used to measure transition time, denoted by the symbol transition.

PARAMETER MEASUREMENT INFORMATION (Cont.)

5. Charge injection

The UTC **UMUX1111** devices have a transmission-gate topology. Any mismatch in capacitance between the NMOS and PMOS transistors results in a charge injected into the drain or source during the falling or rising edge of the gate signal. The amount of charge injected into the source or drain of the device is known as charge injection, and is denoted by the symbol QC. Figure 5 shows the setup used to measure charge injection from source (Sx) to drain (Dx).

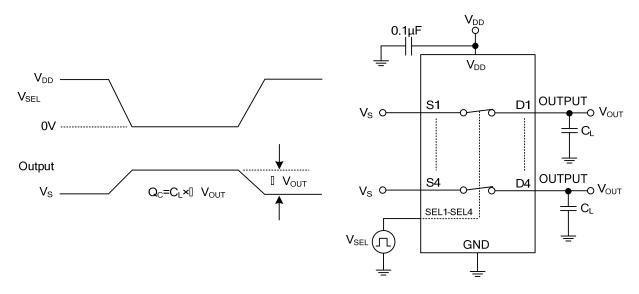
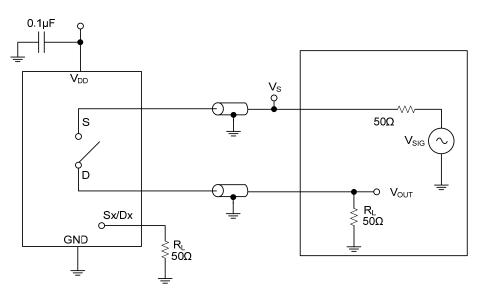
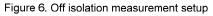




Figure 5. Charge-injection measurement setup

6. Off isolation

Off isolation is defined as the ratio of the signal at the drain pin (Dx) of the device when a signal is applied to the source pin (Sx) of an off-channel. The characteristic impedance, Z0, for the measurement is 50Ω . Figure 6 shows the setup used to measure off isolation. Use off isolation equation to compute off isolation.

Off Isolation = 20 · Log
$$\left(\frac{V_{OUT}}{V_{O}}\right)$$

■ PARAMETER MEASUREMENT INFORMATION (Cont.)

7. Channel-to-Channel Crosstalk

Crosstalk is defined as the ratio of the signal at the drain pin (Dx) of a different channel, when a signal is applied at the source pin (Sx) of an on-channel. The characteristic impedance, Z0, for the measurement is 50Ω . Figure 7 shows the setup used to measure, and the equation used to compute crosstalk.

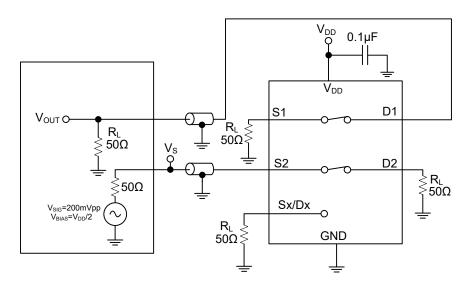


Figure 7. Channel-to-Channel Crosstalk Measurement Setup

Channel-to-Channel Crosstalk =
$$20 \cdot \text{Log}(\frac{V_{OUT}}{V_S})$$

8. Bandwidth

Bandwidth is defined as the range of frequencies that are attenuated by less than 3 dB when the input is applied to the source pin (Sx) of an on-channel, and the output is measured at the drain pin (Dx) of the device. The characteristic impedance, Z0, for the measurement is 50 Ω . Figure 8 shows the setup used to measure bandwidth.

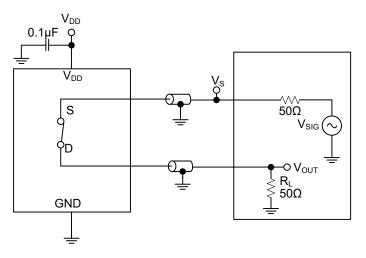
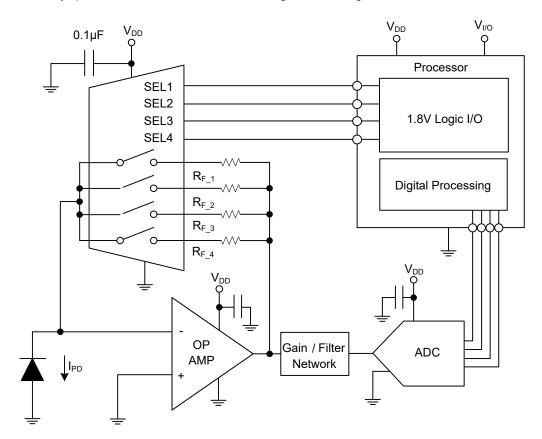
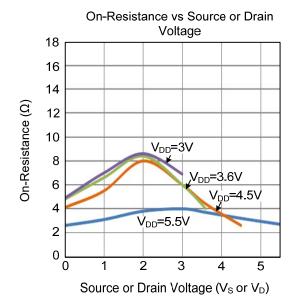
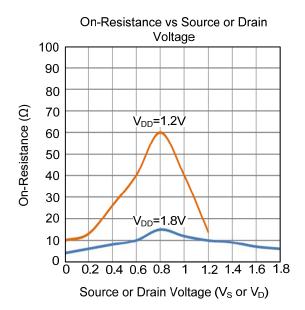


Figure 8. Bandwidth measurement setup

TYPICAL APPLICATION CIRCUIT

Switches and multiplexers are commonly used in the feedback path of amplifier circuits to provide configurable gain control. By using various resistor values on each switch path the UTC **UMUX1111** allows the system to have multiple gain settings. An external resistor, or utilizing 1 channel always being closed, ensures the amplifier isn't operating in an open loop configuration. A transimpedance amplifier (TIA) for photodiode inputs is a common circuit that requires gain control using a multi-channel switch to convert the output current of the photodiode into a voltage for the MCU or processor. The leakage current, capacitance, and charge injection performance of the UTC **UMUX1111** are key specifications to evaluate when selecting a device for gain control.


Figure 12. Switching Gain Settings of a TIA circuit

LINEAR INTEGRATED CIRCUIT

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

