

UTC UNISONIC TECHNOLOGIES CO., LTD

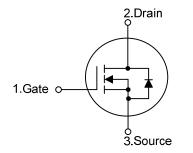
UFB4332

Preliminary

60A, 250V N-CHANNEL **ENHANCEMENT MODE** TRENCH POWER MOSFET

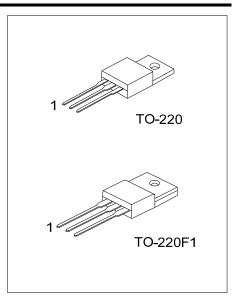
DESCRIPTION

The UTC UFB4332 is an N-channel Power MOSFET, it uses UTC's advanced technology to provide the customers with low voltage inverter applications.

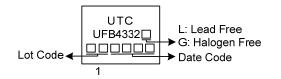

The UTC UFB4332 is suitable for high efficiency synchronous rectification in SMPS, UPS, hard switched and high frequency circuits.

FEATURES

- * $R_{DS(ON)} \le 33 \text{ m}\Omega @ V_{GS}=10V, I_D=35A$
- * High Cell Density Trench Technology


* High Power and Current Handling Capability

SYMBOL


ORDERING INFORMATION

Ordering Number		Package	Pin Assignment			De alvie e	
Lead Free	Lead Free Halogen Free		1	2	3	Packing	
UFB4332L-TA3-T	332L-TA3-T UFB4332G-TA3-T		G	D	S	Tube	
UFB4332L-TF1-T	UFB4332L-TF1-T UFB4332G-TF1-T		G	D	S	Tube	
Note: Pin Assignment: G: Gate D: Drain S: Source							
Note: Pin Assignment: G: Gate D: Drain S: Source		(1) T: Tube (2) TA3: TO-220, TF1: TO-220F1 (3) G: Halogen Free and Lead Free, L: Lead Free					

UFB4332

MARKING

■ ABSOLUTE MAXIMUM RATINGS (Tc=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
Drain-Source Voltage		V _{DSS}	250	V	
Gate-Source Voltage		V _{GSS}	±20	V	
Continuous Drain Current	Continuous	ID	60	А	
Pulsed Drain Current	Pulsed (Note 2)	I _{DM}	120	А	
Avalanche Energy Single Pulsed (Note 3)		E _{AS}	655	mJ	
Peak Diode Recovery dv/dt (Note 4)		dv/dt	4.47	V/mS	
Power Dissipation	TO-220	D	150	W	
	TO-220F1	PD	57	W	
Junction Temperature		TJ	+250	°C	
Storage Temperature Range		T _{STG}	-55 ~ +250	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. Repetitive Rating: Pulse width limited by maximum junction temperature.

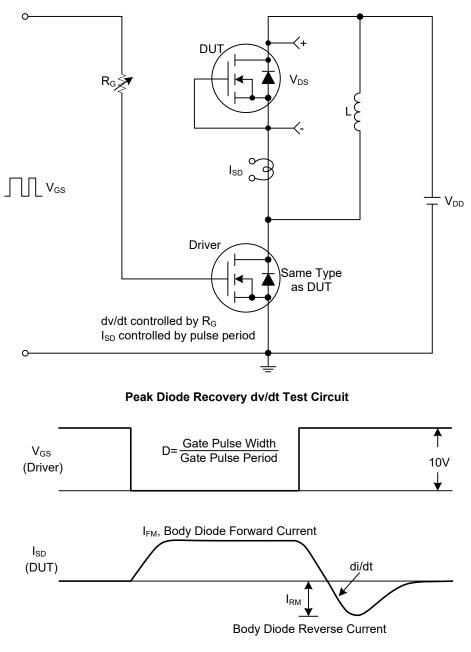
3. L = 0.39mH, I_{AS} = 58A, V_{DD} = 50V, R_G = 25 Ω , Starting T_J = 25°C.

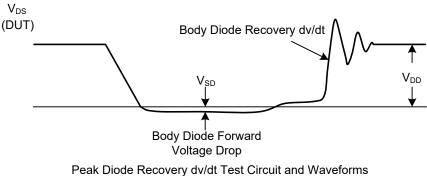
4. $I_{SD} \leq$ 30A, di/dt \leq 200A/µs, $V_{DD} \leq$ BV_{DSS}, Starting T_J = 25°C.

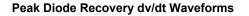
THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT	
Junction to Ambient		θ _{JA}	62.5	°C/W	
Junction to Case	TO-220	0	0.83	°C/W	
	TO-220F1	θις	2.19	°C/W	

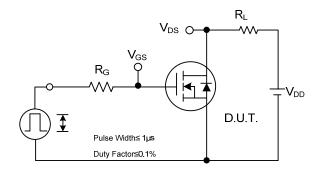
■ ELECTRICAL CHARACTERISTICS (TJ=25°C, unless otherwise specified)

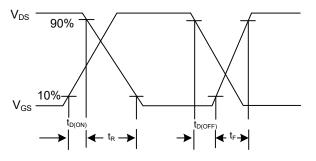

PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS							
Drain-Source Breakdown Voltage		BV _{DSS}	V _{GS} =0V, I _D =250µA	250			V
Drain-Source Leakage Current		I _{DSS}	V _{DS} =250V, V _{GS} =0V			10	μA
Gate- Source Leakage Current	Forward	I _{GSS}	V _{GS} =20V, V _{DS} =0V			100	nA
	Reverse		V _{GS} =-20V, V _{DS} =0V			-100	nA
ON CHARACTERISTICS							
Gate Threshold Voltage		V _{GS(TH)}	V _{DS} =V _{GS} , I _D =250µA	3.0		5.0	V
Static Drain-Source On-State Resistance		R _{DS(ON)}	V _{GS} =10V, I _D =35A			33	mΩ
DYNAMIC CHARACTERISTICS							
Input Capacitance	nput Capacitance				14.16		nF
Output Capacitance		Coss	V _{DS} =25V, V _{GS} =0V, f=1.0MHz		566		рF
Reverse Transfer Capacitance		C _{RSS}			438		pF
SWITCHING CHARACTERISTIC	S						
Total Gate Charge (Note 1)		Q_{G}			282		nC
Gate-Source Charge		Q _{GS}	V_{DS} =200V, V_{GS} =10V, I_{D} =60A		140		nC
Gate-Drain Charge		Q_{GD}	(Note 1, 2)		111		nC
Turn-On Delay Time (Note 1)		t _{D(ON)}			64		ns
Turn-On Rise Time		t _R	V _{DS} =100V, V _{GS} =10V, I _D =60A,		45.85		ns
Turn-Off Delay Time		t _{D(OFF)}	R _G =3.3Ω (Note 1, 2)		92.6		ns
Turn-Off Fall Time		t _F			48.3		ns
DRAIN-SOURCE DIODE CHARA	CTERISTICS	AND MAXI	MUM RATINGS				
Maximum Body-Diode Continuous Current		ls				60	Α
Maximum Body-Diode Pulsed Current		Ism				120	Α
Drain-Source Diode Forward Voltage (Note 1)		V _{SD}	I _S =60A , V _{GS} =0V			1.4	V
Body Diode Reverse Recovery Time (Note 1)		t _{rr}	Is=30A, V _{GS} =0V,		262		ns
Body Diode Reverse Recovery Charge		Qrr	dI⊧/dt=100A/µs		1932		nC
Natary A. Dulas Tasti Dulas uddh			,				

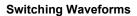

Notes: 1. Pulse Test: Pulse width \leq 300µs, Duty cycle \leq 2%.

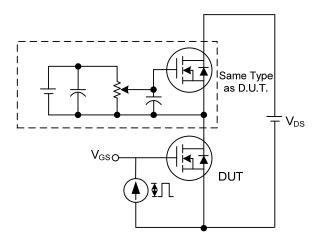

2. Essentially independent of operating temperature.

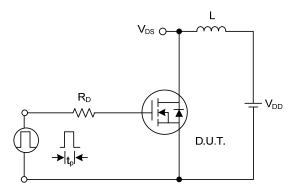
■ TEST CIRCUITS AND WAVEFORMS



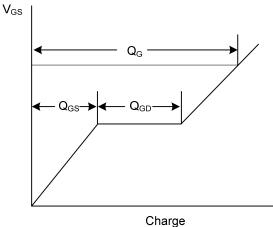


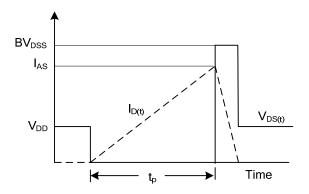



TEST CIRCUITS AND WAVEFORMS



Switching Test Circuit




Gate Charge Test Circuit

Unclamped Inductive Switching Test Circuit

Unclamped Inductive Switching Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

