

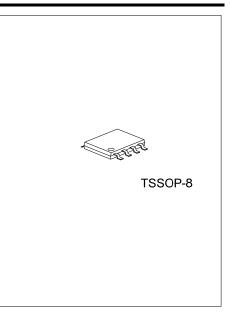
U74CB3Q3305

Preliminary

CMOS IC

DUAL FET BUS SWITCH 2.5V OR 3.3V LOW-VOLTAGE HIGH-BANDWIDTH BUS SWITCH

DESCRIPTION


The **U74CB3Q3305** device is a high-bandwidth FET bus switch using a charge pump to elevate the gate voltage of the pass transistor, providing a low and flat ON-state resistance (R_{ON}). The low and flat ON-state resistance allows for minimal propagation delay and supports switching input voltage beyond the supply on the data input/output (I/O) ports. The device also features low data I/O capacitance to minimize capacitive loading and signal distortion on the data bus. Specifically designed to support high-bandwidth applications, the **U74CB3Q3305** device provides an optimized interface solution ideally suited for broadband communications, networking, and data-intensive computing systems.

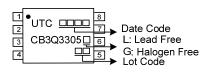
This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} circuitry prevents damaging current backflow through the device when it is powered down. The device has isolation during power off

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

FEATURES

- * Operation Voltage Range: 2.3 ~ 3.6V
- * Low power consumption, 0.25mA Typ. Icc
- * High-bandwidth data path (up to 500 MHz)
- * 5V tolerant I/Os with device powered up or powered down
- * Low and flat ON-state resistance (ron) characteristics over operating range (Ron = 3.5Ω typical)
- * Supports input voltage beyond supply on data I/O ports
- 0 to 5V switching with 3.3V V_{CC} 0 to 3.3V switching with 2.5V V_{CC}
- * Data I/Os support 0 to 5 V signaling levels (0.8V, 1.2V, 1.5V, 1.8V, 2.5V, 3.3V, and 5V)
- * Control inputs can be driven by TTL or 5V/3.3V CMOS outputs
- * IOFF supports partial-power-down mode operation

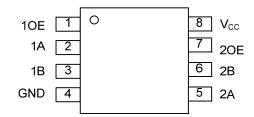
U74CB3Q3305


CMOS IC

ORDERING INFORMATION

Ordering	Number	Dookogo	Deaking
Lead Free	Halogen Free	Package	Packing
U74CB3Q3305L-P08-R	CB3Q3305L-P08-R U74CB3Q3305G-P08-R		Tape Reel

U74CB3Q3305G-P08-R	
T T (1)Packing Type	(1) R: Tape Reel
(2)Package Type	(2) P08: TSSOP-8
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

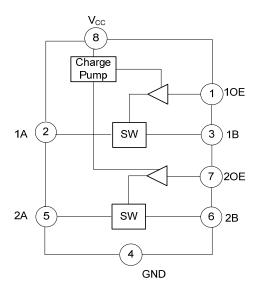

MARKING

U74CB3Q3305

PIN CONFIGURATION

PIN CONFIGURATION

PIN No	SYMBOL	TYPE	DESCRIPTION
1	10E	-	Output Enable for Switch 1
2	1A	I/O	Channel 1A Port
3	1B	I/O	Channel 1B Port
4	GND	Р	Ground
5	2A	I/O	Channel 2A Port
6	2B	I/O	Channel 2B Port
7	20E	-	Output Enable for Switch 2
8	Vcc	Р	Power Supply


Note: I=Input, O=Output, I/O=Input and Output, P=Power.

FUNCTION TABLE (Each Bus Switch)

INPUT(OE)	INPUT(A)	FUNCTION
Н	В	A Port = B Port
L	Z	Disconnect

Note: H: HIGH Voltage Level; L: LOW Voltage Level; Z=High-Impedance OFF-State.

■ LOGIC DIAGRAM (Positive Logic)

Preliminary

ABSOLUTE MAXIMUM RATINGS

Over recommended operating ree-air temperature range (Oniess otherwise specified)									
PARAMETER	SYMBOL	TEST CONDITIONS	RATINGS	UNIT					
Supply Voltage	Vcc		-0.5 ~ 4.6	V					
Input Voltage	V _{IN}		-0.5 ~ 7	V					
Switch I/O Voltage Range	V _{I/O}		-0.5 ~ 7	V					
Input Clamp Current	I _{IK}	V _{IN} < 0V	-50	mA					
I/O Port Clamp Current	I _{I/OK}	V _{OUT} < 0V	-50	mA					
ON-State Switch Current	I _{I/O}		±64	mA					
Continuous Current Through V_{CC} or GND			±100	mA					
Junction Temperature	TJ		+150	°C					
Storage Temperature Range	T _{STG}		-55 ~ +150	°C					

Over recommended operating free-air temperature range (Unless otherwise specified)

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. V_I and VO are used to denote specific conditions for $V_{I/O}$.

3. I₁ and IO are used to denote specific conditions for $I_{1/O}$.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc	2.3		3.6	V
Switch I/O Voltage Range	Vi/o	0		5.5	V
Operating Temperature	TA	-40		+125	°C

ELECTRICAL CHARACTERISTICS

Over recommended operating free-air temperature range (Unless otherwise specified)

PARAMETER SYMBOL		SYMBOL	TEST CONDITIONS MIN		TYP	MAX	UNIT
High-Level Input Voltage		Mar	V _{CC} =2.3V~2.7V	1.7			V
nign-Level input	vollage	Vін	Vcc=2.7V~3.6V	2.0			V
Low-Lever Outpu	it Voltaga	VIL	V _{CC} =2.3V~2.7V			0.7	V
	it voltage	VIL	Vcc=2.7V~3.6V			0.8	V
Clamp Diode Vo	ltage	VIK	V _{CC} =3.6V, I _I =-18mA			-1.8	V
Input Current	Control Inputs	lin	Vcc=3.6V, Vout=0~5.5V			±1	μA
Output OFF-state (Note 3)	put OFF-state current te 3)		V _{CC} =3.6V, V _{OUT} =0∼5.5V, V _{IN} =0, Switch OFF, V _{IN} =V _{CC} or GND			±1	μA
OFF-state output	F-state output current I _{OFF}		V _{CC} =0, V _{OUT} =0~5.5V, V _{IN} =0			1	μA
Quiescent Supply Current		Icc	V _{CC} =3.6V, I _{IO} =0, Switch ON or OFF, V _{IN} =V _{CC} or GND		0.25	0.7	mA
Additional	Control Inputs	∆l _{CC} (Note 4)	V_{CC} =3.6V, One Input at 3V, Other Inputs at V_{CC} or GND			25	μA
Quiescent Supply Current Per Input Pin Input		I _{CCD} (Note 5)	V _{CC} =3.6V, A and B Ports Open, Control Input Switching at 50% duty cycle		0.04	0.045	mA/ MHz
Input Capacitance	Control Inputs	C _{IN}	V _{CC} =3.3V, V _{IN} =5.5V, 3.3V, 0		2.5	3.5	pF
OFF Output Cap	vitput Capacitance C _{IO(OFF)} V _{CC} =3.3V, Switch OFF, V _{IN} =V _{CC} or GND, V _{I/O} =5.5V, 3.3V, 0 3.5 5		5.0	pF			

Preliminary

■ ELECTRICAL CHARACTERISTICS (Cont.)

Over recommended operating free-air temperature range (Unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS MI			TYP	MAX	UNIT
ON Output Capacitance	C _{IO(ON)}	V _{CC} =3.3V, Switch ON, V _{IN} =V _{CC} or GND, V _{I/O} =5.5V, 3.3V, 0			8.0	10.5	pF
	R _{DS(ON)}	V _{CC} =3.3V, TYP	V _{IN} =0, I _O =30mA		3.5	8.0	Ω
Static Drain-Source		at V _{CC} =2.5V	V _{IN} =1.7V, I _O =-15mA		4	9.0	Ω
On-State Resistance		$V_{CC}=3.0V$	V _{IN} =0, I _O =30mA		3.5	6.0	Ω
(Note 6)			V _{IN} =2.4V, I _O =-15mA		4	8.0	Ω

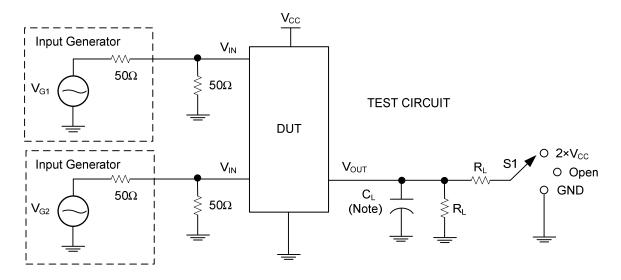
Notes: 1. V_{IN} and I_{IN} refer to control inputs. V_I , V_O , I_I , and I_O refer to data pins.

- 2. All typical values are at V_{CC} =3.3V (unless otherwise noted), T_A=25°C.
- 3. For I/O ports, the parameter IOZ includes the input leakage current.
- 4. This is the increase in supply current for each input that is at the specified TTL voltage level, rather than V_{CC} or GND.
- 5. This parameter specifies the dynamic power-supply current associated with the operating frequency of a single control input.
- 6. Measured by the voltage drop between the A and B terminals at the indicated current through the switch. ON-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

DYNAMIC CHARACTERISTICS

				T _A =25°C			T _A =-4			
PARAMETER	SYMBOL	IESI			TYP	MAX	MIN	TYP	MAX	UNIT
From Input (OE) to Output	foe	Vcc=2.5V±0).2V			10			10	MHz
(A or B) (Note 1)	IOE	Vcc=3.3V±0) <u>.</u> 3V			20			20	MHz
Propagation Delay Time, From Input (A or B) to	t _{PD}	C∟=30pF	V _{CC} =2.5V±0.2V			0.2			0.6	ns
Output (B or A) (Note 2)	(t _{PLH} /t _{PHL})	C∟=50pF	V _{CC} =3.3V±0.3V			0.2			0.6	ns
Enable Delay Time, From Input (OE) to Output	t _{en}	Vcc=2.5V±0).2V	1		12	1		13	ns
(A or B)	(1 /1)	Vcc=3.3V±0).3V	1		6.5	1		7.5	ns
Disable Delay Time,	t _{dis}	Vcc=2.5V±0).2V	1		6	1		7.5	ns
From Input (OE) to Output (t _{PLZ} /t		Vcc=3.3V±0	-	1		5.5	1		7	ns

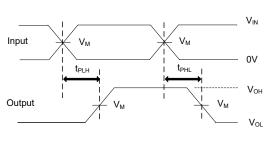
Notes: 1. Maximum switching frequency for control input (V₀ > V_{CC}, V₁ = 5V, R_L \ge 1M Ω , C_L = 0).


2. The propagation delay is the calculated RC time constant of the typical ON-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

OPERATING CHARACTERISTIC

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Dissipation Capacitance	Cpd	No load		32		pF

TEST CIRCUIT AND WAVEFORMS


Note: CL includes probe and jig capacitance.

TEST	Vcc	S1	R∟	VIN	CL	$V_{ riangle}$
t _{PD}	2.5V±0.2V	Open	500Ω	Vcc or GND	30pF	
(tplh/tphl)	3.3V±0.3V	Open	500Ω	Vcc or GND	50pF	
t _{en}	2.5V±0.2V	2×V _{CC}	500Ω	GND	30pF	0.15V
(t _{PZL} /t _{PZH})	3.3V±0.3V	2×V _{CC}	500Ω	GND	50pF	0.3V
t _{dis}	2.5V±0.2V	GND	500Ω	Vcc	30pF	0.15V
(t _{PLZ} /t _{PHZ})	3.3V±0.3V	GND	500Ω	Vcc	50pF	0.3V

Input

Output

Output

PROPAGATION DELAY TIMES

ENABLE AND DISABLE TIMES

Vм

 $\mathbf{t}_{\mathsf{PLZ}}$

t_{PHZ}

Vм

t_{PZL}

t_{PZH}

Vм

VM

Notes: 1. CL includes probe and test-fixture capacitance

2. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Z₀= 50 Ω , t_r<2.5ns, t_r<2.5ns

 V_{IN}

0V

¥_{LOAD}/2

V_{OL}

 V_{OH}

0V

 $V_{OL}\text{+}V_{\Delta}$

 $V_{OH}-V_{\Delta}$

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

