

UNISONIC TECHNOLOGIES CO., LTD

U74LVCU04

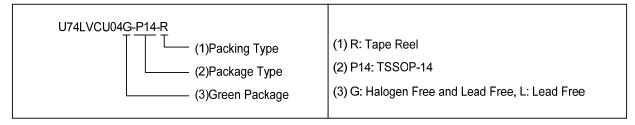
Preliminary

HEX INVERTERS

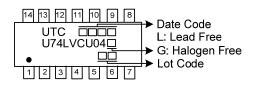
DESCRIPTION

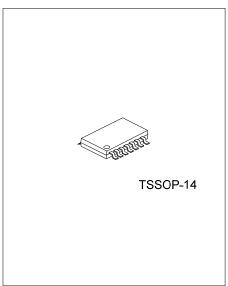
The U74LVCU04 is designed specifically for 1.6V to 3.6V V_{CC} operation.

This device contains six independent inverters with unbuffered outputs and performs the Boolean function $Y = \overline{A}$ in positive logic.


This device is fully specified for partial-power-down applications using I_{OFF} . The I_{OFF} circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.

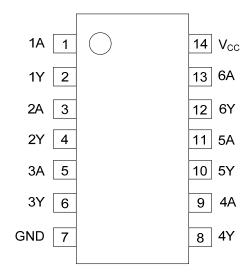
FEATURES


- * Operate from 1.65V to 3.6V
- * Inputs accept voltages to 5.5V
- * IOFF supports partial-power-down mode
- * Low power dissipation: I_{CC}=1µA (Max.)
- * ±24mA output drive (V_{CC}=3.3V)
- * Unbuffered Outputs


ORDERING INFORMATION

ORDERING INFOR											
Ordering	g Number	Deskere	Deeking								
Lead Free	Halogen Free	Package	Packing								
U74LVCU04L-P14-R	U74LVCU04G-P14-R	TSSOP-14	Tape Reel								

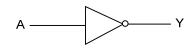
MARKING



U74LVCU04

Preliminary

PIN CONFIGURATION



FUNCTION TABLE (each gate)

INPUT (A)	OUTPUT (Y)
Н	L
L	Н

Note: H: HIGH Voltage Level L: LOW Voltage Level

■ LOGIC DIAGRAM (positive logic)

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	Vcc	-0.5 ~ +6.5	V
Input Voltage	V _{IN}	-0.5 ~ +6.5	V
Output Voltage	Vout	-0.5 ~ V _{CC} +0.5	V
Continuous Output Current		±50	mA
Continuous Current Through V _{CC} or GND	Ιουτ	±100	mA
Input Clamp Current (V _{IN} <0)	lıк	-50	mA
Output Clamp Current (V _{OUT} <0)	Ι _{οκ}	-50	mA
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Over the Matter of	N	Operating	1.65		3.6	V
Supply Voltage	Vcc	Data retention only	1.5			V
Input Voltage	VI		0		5.5	V
Output Voltage	Vo		0		Vcc	V
Operating Temperature	TA		-40		+125	°C

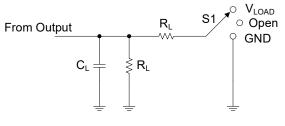
ELECTRICAL CHARACTERISTICS (Unless otherwise specified)

			T _A =		T _A =25°C		С	T _A =-40~+125°C			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
		Vcc=1.65V	1.32			1.5			V		
		V _{cc} =2.3V	1.84			2.0			V		
High-Level Input Voltage	VIH	V _{CC} =2.7V	2.16			2.16			V		
		Vcc=3V	2.4			2.4			V		
		V _{CC} =3.6V	2.88			2.88			V		
		Vcc=1.65V			0.4			0.4	V		
Low-Level Input Voltage	VIL	V _{CC} =2.3V			0.5			0.5	V		
-		Vcc=2.7~3.6V			0.65			0.65	V		
		V _{CC} =1.65~3.6V, I _{OH} =-100µА	V _{CC} -0.2			V _{CC} -0.3			V		
	V _{OH}	V _{CC} =1.65V, I _{OH} =-4mA	1.2			1.05			V		
High-Level Output Voltage		V _{CC} =2.3V, I _{OH} =-8mA	1.7			1.65			V		
		V _{CC} =2.7V, I _{OH} =-12mA	2.2			2.05			V		
		V _{CC} =3V, I _{OH} =-12mA	2.4			2.25			V		
		V _{cc} =3V, I _{он} =-24mA	2.2			2.0			V		
		V _{CC} =1.65~3.6V, I _{OL} =100µA			0.2			0.6	V		
		V _{CC} =1.65V, I _{OL} =4mA			0.45			0.65	V		
Low-Level Output Voltage	Vol	V _{CC} =2.3V, I _{OL} =8mA			0.7			0.8	V		
		V _{CC} =2.7V, I _{OL} =12mA			0.4			0.8	V		
		V _{CC} =3V, I _{OL} =24mA			0.55			0.8	V		
Input Leakage Current	I I	V_{CC} =3.6V, V_{IN} = 5.5V or GND			±0.1			±0.1	μA		
Quiescent Supply Current	Icc	V _{CC} =3.6V, V _{IN} = V _{CC} or GND, I _{OUT} =0			1			10	μA		
Additional Quiescent Supply Current Per Input Pin	ΔI _{CC}	V_{CC} =2.7 ~ 3.6V, One input at V_{CC} -0.6V, other inputs at V_{CC} or GND			500			5000	μA		
Input Capacitance	CIN	V_{CC} =3.3V, V_{IN} = V_{CC} or GND		8			-		рF		

U74LVCU04

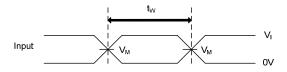
Preliminary

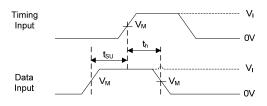
SWITCHING CHARACTERISTIC (Unless otherwise specified)


				TEAT CONDITIONO TA=25°C		T _A =-			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
	V _{CC} =1.8V±0.15V	0.3	5.3	7.9	0.3		9.0	ns	
Propagation Delay From		V _{CC} =2.5V±0.2V	0.5	3.6	6.8	0.5		7.0	ns
Input (A) to Output(Y)		V _{CC} =2.7V	0.5	3.4	4.8	0.5		6.0	ns
		V _{CC} =3.3V±0.3V	0.5	3.2	4.1	0.5		5.0	ns

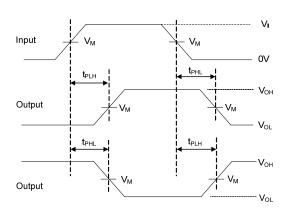
■ **OPERATING CHARACTERISTICS** (f=10MHz, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Dissipation Capacitance		Vcc=1.8V		3		рF
		Vcc=2.5V		4		рF
		Vcc=3.3V		5		рF

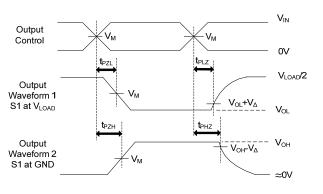

TEST CIRCUIT AND WAVEFORMS



TEST	S1
t _{PLH} / t _{PHL}	OPEN
t _{PLZ} / t _{PZL}	V _{LOAD}
t _{PHZ} / t _{PZL}	GND


Fig.1	Load circuitry for switching times.
-------	-------------------------------------

Vcc	VIN	t _R ,/t _F	VM	VLOAD	C∟	R∟	VA
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2×Vcc	30pF	1ΚΩ	0.15V
2.5V±0.2V	Vcc	≤2ns	Vcc/2	2×Vcc	30pF	500Ω	0.15V
2.7V	2.7V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V
3.3V±0.3V	2.7 V	≤2.5ns	1.5V	6V	50pF	500Ω	0.3V



PULSE DURATION

SETUP AND HOLD TIMES

ENABLE AND DISABLE TIMES

Fig. 2 Propagation delay from input to output and input voltage waveforms.

■ TEST CIRCUIT AND WAVEFORMS (Cont)

Notes: 1. C_L includes probe and jig capacitance.

2. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control

- 3. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z = 50 Ω , slew rate 1 V/ns.
- 4. The outputs are measured one at a time, with one transition per measurement.
- 5. t_{PLH} and t_{PHZ} are the same as $t_{\mathsf{dis}}.$
- 6. t_{PZL} and t_{PZH} are the same as t_{en} .
- $7.t_{\mathsf{PLH}}$ and t_{PHL} are the same as $t_{\mathsf{PD.}}$
- 8. All parameters and waveforms are not applicable to all devices.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

