

UTC UNISONIC TECHNOLOGIES CO., LTD

ULV602

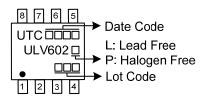
RAIL-TO-RAIL OUTPUT DUAL CMOS OP AMPS

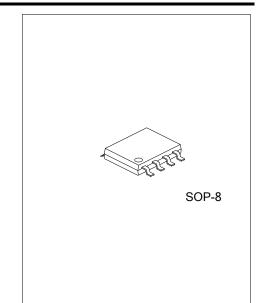
DESCRIPTION

The UTC ULV602 family of low-power operational amplifier (op amps) is offered in dual configurations. The op amps utilize an advanced CMOS technology that provides low bias current, high-speed operation, high open-loop gain, and rail-to-rail output swing. This product offering operates with a single supply voltage that can be as low as 2.7V, while drawing 200µA (typical) of quiescent current per amplifier. In addition, the common mode input voltage range goes 0.3V below ground, making these amplifiers ideal for single-supply operation.

The device is appropriate for low power, battery operated circuits due to the low quiescent current, for A/D convert driver amplifiers because of their wide bandwidth or for anti-aliasing filters by virtue of their low input bias current.

FEATURES

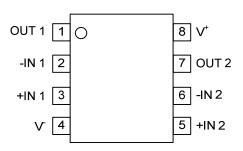

- * Supply Voltage: 2.7V ~ 6.0V
- * Supply Current: 200µA/amplifier (Typical)
- * Input Offset Voltage: 2mV (Max.)
- * Rail-to-Rail Output
- * Slew Rate: 2.3V/µs (Typ.)


ORDERING INFORMATION

Ordering Number		Daakaaa	Dealing	
Lead Free	Halogen Free	Package	Packing	
ULV602L-S08-R	ULV602G-S08-R	SOP-8	Tape Reel	

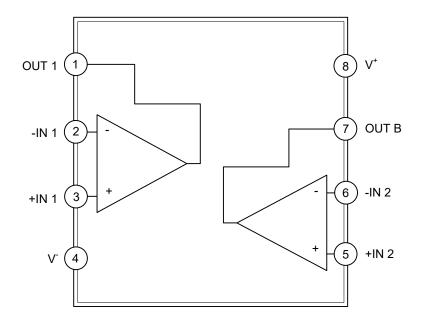
ULV602G-S08-R		
T T T	(1)Packing Type	(1) R: Tape Reel
	(2)Package Type	(2) S08: SOP-8
	(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING



CMOS IC

ULV602


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION	
1	OUT 1	Output of 1 AMP	
2	-IN 1	Inverting input of 1 AMP	
3	+IN 1	Non-inverting input of 1 AMP	
4	V-	Negative Power Supply	
5	+IN 2	Non-inverting input of 2 AMP	
6	-IN 2	Non-inverting input of 2 AMP	
7	OUT 2	Output of 2 AMP	
8	V ⁺	Positive Power Supply	

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply	V+ - V-	7.0	V
Difference Input Voltage		V+ - V-	V
Current at Output and Supply Pins		±30	mA
Current at Input Pins	lin	±2	mA
Analog Inputs (V _{IN} +, V _{IN} -)		V⁻ -1.0 ~ V⁺ +1.0	V
All Other Inputs and Outputs		V⁻ -0.3 ~ V⁺ +0.3	V
Maximum Junction Temperature	TJ	+150	°C
Storage Temperature	Tstg	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Thermal Resistance	θ」Α	125	°C/W

RECOMMENDED OPWRAING CONDITIONS

PARAMETER	SYMBOL	RATING	UNIT
Supply Voltage	V+ - V-	2.7 ~ 6.0	V
Operating Free-Air Temperature	Topr	-40 ~ +125	°C

ELECTRICAL CHARACTERISTICS

(T_A=25°C, V₊=+2.7 ~ +5.5V, R_L=100k Ω , V_{CM} = V₊/2, unless otherwise specified)

· · · ·			N 41N I			
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Current/Amplifier	IQ	Io=0		200	325	μA
Power Supply Rejection Ratio	PSRR	V+ = 2.7V ~ 5.5V	76	120		dB
Input Offset Voltage	Vos		-2	±0.7	+2	mV
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta_T$	T _A = -40°C to +125°C		±2.5		μV/°C
Input Bias Current	lв			1		рА
Input Offset Current	los			±1		рА
Common-Mode Voltage Range	Vсм		V ⁻ -0.3		V ⁺ -1.2	V
Common-Mode Rejection Ratio	CMRR	V _{CM} =-0.3V~3.8V, V ⁺ =5.0V	75	90		dB
	Av	R _L = 25kΩ V _{OUT} =0.1V~ V ⁻ - 0.1V	85	105		dB
Large Signal Voltage Gain		R _L = 5kΩ V _{OUT} =0.1V~ V ⁻ - 0.1V	80	100		dB
	Vo	R_L = 25k Ω , $A_{OL} \ge 100 dB$	V ⁻ +100		V+-100	mV
Output Voltage		$R_L = 5k\Omega, A_{OL} \ge 95dB$	V⁻+100		V+-100	mV
Short-Circuit Current	ISC	Sourcing, VO=0V		25		mA
		Sinking, VO= V+		20		mA
Slew Rate	SR			2.3		V/µs
Gain-Bandwidth Product	GBW			2.8		MHz
Phase Margin	ФМ			25		degrees
Veltage Naise Density	en	f=1kHz		32		nV/√Hz
Voltage Noise Density		f=10kHz		23		nV/ √Hz

TEST CIRCUITS

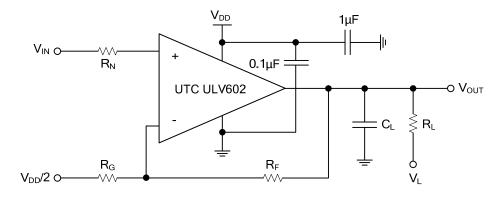
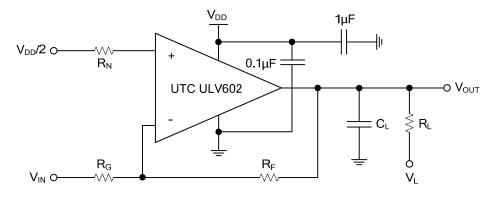
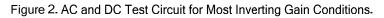
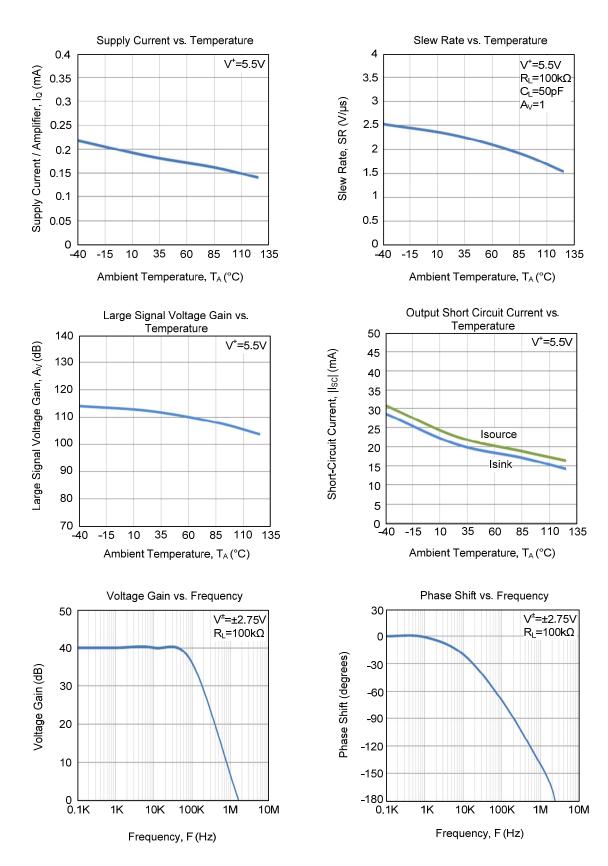




Figure 1. AC and DC Test Circuit for Most Non-Inverting Gain Conditions.



ULV602

TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

