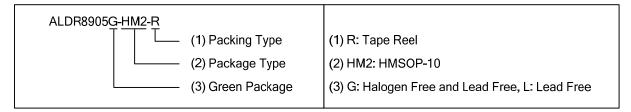

ALDR8905 Preliminary CMOS IC

CAPLESS 2 V_{RMS} TO 3 V_{RMS} LINE DRIVER WITH ADJUSTABLE GAIN

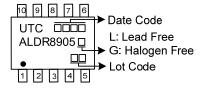
■ DESCRIPTION

The UTC **ALDR8905** is a $2V_{\text{RMS}}$ to $3V_{\text{RMS}}$ pop/click-free stereo line driver designed to allow the removal of the output DC-blocking capacitors for reduced component count and cost. The device is ideal for single supply electronics where size and cost are critical design parameters.

The UTC **ALDR8905** is capable of driving $2V_{\text{RMS}}$ into a $2.5 k\Omega$ load with 3.3 V supply voltage. The device has single input and uses external gain setting resistors that supports a gain range of $\pm 1 V/V$ to $\pm 10 V/V$. The **ALDR8905** has build-in shutdown control for pop/click-free on/off control.

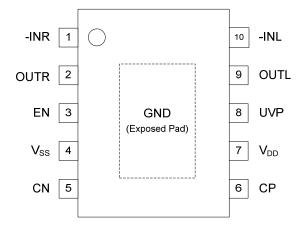


■ FEATURES


- * Integrated Charge pump generates negative supply rail
- * Provides flat frequency response from DC to 20kHz
- * Pop-Free under-voltage protection
- * Low noise and THD
- Typical THD+N = 0.001% (f =1kHz)
- * $2V_{RMS}$ output voltage into $2.5k\Omega$ load with 3.3V supply voltage
- * 3V_{RMS} output voltage into 2.5kΩ load with 5V supply voltage

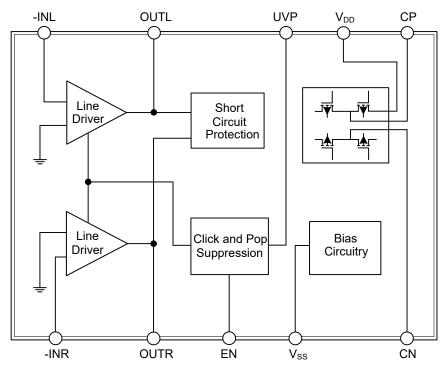
■ ORDERING INFORMATION

Ordering Number		Doolsono	Dealine	
Lead Free	Halogen Free	Package	Packing	
ALDR8905L-HM2-R	ALDR8905G-HM2-R	HMSOP-10	Tape Reel	



MARKING

<u>www.unisonic.com.tw</u> 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

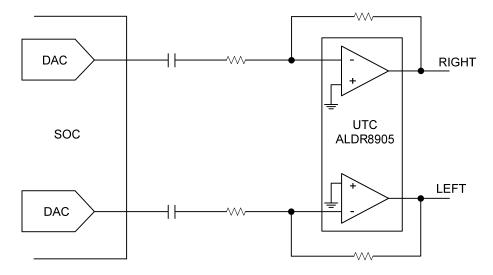
PIN NO.	PIN NAME	DESCRIPTION
1	-INR	Right Channel OPAMP Negative Input
2	OUTR	Right Channel OPAMP Output
3	EN	Enable Input. Active high
4	Vss	Negative Supply Voltage
5	CN	Charge Pump Flying Capacitor Negative Terminal
6	СР	Charge Pump Flying Capacitor Positive Terminal
7	V_{DD}	Positive Supply Voltage
8	UVP	Under-Voltage Protection Input
9	OUTL	Left Channel OPAMP Output
10	-INL	Left Channel OPAMP Negative Input
Exposed Pad	GND	Exposed Pad. Can only be connected to GND

■ BLOCK DIAGRAM

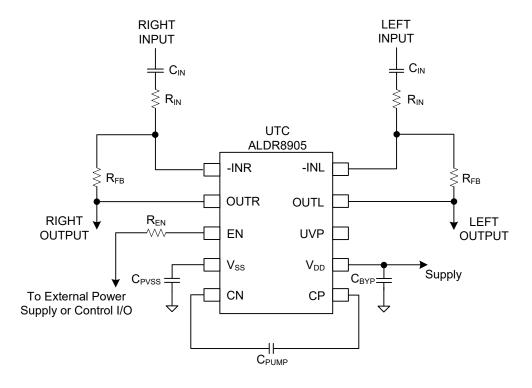
■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{DD}	-0.3 ~ 6	
Input Voltage	V _{IN}	$V_{SS} - 0.3 \sim V_{DD} + 0.3$	
Minimum Load Impedance	R_L	600	Ω
EN to GND		$-0.3 \sim V_{DD} + 0.3$	V
Lead Temperature (Soldering, 10s)		+260	°C
Junction Temperature	T_J	+150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.


■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{DD}	3 ~ 5.5	V
Operating Temperature	TA	-40 ~ +85	°C


■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
ELECTRICAL CHARACTERISTICS						
DC Supply Voltage	V_{DD}		3		5.5	V
Output Offset Voltage	Vos	V _{DD} =3~5V	-5.5		5.5	mV
Power Supply Rejection Ratio	PSRR	V _{DD} =3~5V		97		dB
High-Level Output Voltage	Vон	V_{DD} =3.3 V , R_L =2.5 $k\Omega$	3.1			V
Low-Level Output Voltage	Vol	V_{DD} =3.3 V , R_L =2.5 $k\Omega$			-3.05	V
High-Level Input Current (EN)	[liH]	V_{DD} =5 V , V_{I} = V_{DD}			1	μA
Low-Level Input Current (EN)	[lı∟]	V _{DD} =5V, V _I =0V			1	μΑ
Supply Current	I _{DD}	V _{DD} =3.3V, Noload, EN=V _{DD}		7	14.5	mA
		V _{DD} =5V, Noload, EN=V _{DD}		9.5	15.5	mA
		Shutdown mode, V _{DD} =3V to 5V		0.15	0.25	mA
OPERATING CHARACTERISTIC	S (V _{DD} =3.3V,	R_L =2.5 $k\Omega$, C_{PUMP} = C_{PVSS} =1 μ F, C_{IN} =10	μF, R _{IN} =	=10kΩ, F	R _{FB} =20k	Ω.)
Output Voltage	W	THD=1%, V _{DD} =3.3V, f=1kHz	2.05			V_{RMS}
(Outputs In Phase)	Vo	THD=1%, V _{DD} =5V, f=1kHz	3.05			V _{RMS}
Total Harmonic Distortion Plus	THD+N	V _O =2V _{RMS} , f=1kHz		0.001		%
Noise	וחטדוו			0.001		
Crosstalk	X _{TALK}	V _O =2V _{RMS} , f=1kHz		-103		dB
Output Current Limit	lο	V _{DD} =3.3V		20		mA
Input Resistor Range	R _{IN}			10		kΩ
Feedback Resistor Range	R_FB			20		kΩ
Slew Rate	SR			10		V/µs
Maximum Capacitive Load	C_L			220		pF
Noise Output Voltage	V_N	A-weighted, BW=20kHz		5.4		μV_{RMS}
Signal to Noise Ratio	SNR	A-weighted, V _O =2V _{RMS} , BW=20kHz		108		dB
Unity Gain Bandwidth	G_{BW}			8		MHz
Open-Loop Voltage Gain	A_{VO}			100		dB
Charge Pump Frequency	F_CP		300		600	kHz
External Under-Voltage Detection	V_{UVP}		1	1.15	1.3	V
External Under-Voltage Detection	I			4.8		
Hysteresis Current	I_{Hys}			4.0		μA
EN PIN						
Input High Voltage	V_{INH}	EN	1.2			V
Input Low Voltage	V_{INL}	EN			0.3	V

■ TYPICAL OPERATION CIRCUIT

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

