

**UTC** UNISONIC TECHNOLOGIES CO., LTD

## **ULV722**

## LOW-POWER RAIL-TO-RAIL I/O **CMOS OPERATIONAL** AMPLIFIER

#### DESCRIPTION

The UTC ULV722 (dual) is a low cost rail to rail input and output OP AMP. The UTC ULV722 is low voltage, and low power supply current, that can be designed into a wide range of applications. The UTC ULV722 is designed to provide optimal performance in low voltage and low noise systems. It provides rail-to-rail output swing into heavy loads.

Low quiescent current 1.5mA per channel at 5V can supply 8.5V/µs slew rate. The UTC ULV722 suits for Sensors, Active Filters, Audio, A/D Converters, Test Equipment, Communications, Battery-Powered Instrumentation and photodiode amplifiers, Cellular and Cordless Phones, Laptops and PDAs.

#### **FEATURES**

- \* Supply Voltage: 2.1V ~ 5.5V
- \* Supply Current/Amplifier: 2.1 mA (Max.)
- \* Input Offset Voltage:4mV (Max)
- \* Rail-to-Rail Input and Output
- \* Slew Rate: 8.5V/µs (Typ.)

#### **ORDERING INFORMATION**

| Ordering Number |               | Deskere | Decking   |  |
|-----------------|---------------|---------|-----------|--|
| Lead Free       | Halogen Free  | Раскаде | Packing   |  |
| ULV722L-S08-R   | ULV722G-S08-R | SOP-8   | Tape Reel |  |

| (1) R: Tape Reel                                |
|-------------------------------------------------|
| (2) S08: SOP-8                                  |
| (3) G: Halogen Free and Lead Free, L: Lead Free |
|                                                 |

#### MARKING





# ULV722

### PIN CONFIGURATION



#### ■ PIN DESCRIPTION

| PIN NO. | PIN NAME       | DESCRIPTION                  |
|---------|----------------|------------------------------|
| 1       | OUT 1          | Output of 1 AMP              |
| 2       | -IN 1          | Inverting Input of 1 AMP     |
| 3       | +IN 1          | Non-inverting input of 1 AMP |
| 4       | V-             | Negative power supply        |
| 5       | +IN 2          | Non-inverting input of 2 AMP |
| 6       | -IN 2          | Inverting input of 2 AMP     |
| 7       | OUT 2          | Output of 2 AMP              |
| 8       | V <sup>+</sup> | Positive power supply        |

#### BLOCK DIAGRAM





#### ■ **ABSOLUTE MAXIMUM RATING** (T<sub>A</sub>=25°C, unless otherwise specified)

| PARAMETER                       | SYMBOL           | RATINGS           | UNIT |
|---------------------------------|------------------|-------------------|------|
| Supply Voltage, V⁺ to V⁻        | Vs               | 6                 | V    |
| Input Common Mode Voltage Range | Vcm              | V⁻ -0.3 ~ V⁺ +0.3 | V    |
| Junction Temperature            | TJ               | +150              | °C   |
| Operating Temperature Range     | T <sub>OPR</sub> | -40 ~ +125        | °C   |
| Storage Temperature Range       | Tstg             | -65 ~ +150        | °C   |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

#### RECOMMENDED OPERATING CONDITIONS

Over operating free-air temperature range (Unless otherwise specified)

| PARAMETER                      | SYMBOL           | MIN | TYP | MAX  | UNIT |
|--------------------------------|------------------|-----|-----|------|------|
| Supply Voltage                 | V+ - V-          | 2.1 |     | 5.5  | V    |
| Operating Free-Air Temperature | T <sub>OPR</sub> | -40 |     | +125 | °C   |

#### ELECTRICAL CHARACTERISTICS

(Vs=5V, V<sub>CM</sub>=Vs/2, R<sub>L</sub>=600Ω, T<sub>A</sub>=+25°C, unless otherwise specified)

| PARAMETER                    | SYMBOL                   | TEST CONDITION                             | MIN | TYP     | MAX     | UNIT   |            |
|------------------------------|--------------------------|--------------------------------------------|-----|---------|---------|--------|------------|
| Supply Current/Amplifier     | lq                       | Iout=0                                     |     | 1.5     | 2.1     | mA     |            |
| Power Supply Rejection Ratio | PSRR                     | Vs=2.1V ~ 5.5V, V <sub>CM</sub> < (\       | 68  | 90      |         | dB     |            |
| Input Offset Voltage         | Vos                      |                                            |     | 1.5     | 4       | mV     |            |
| Input Offset Voltage Drift   | $\Delta V_{OS}/\Delta T$ |                                            |     |         | 2.1     |        | µV/°C      |
| Input Bias Current           | lв                       |                                            |     |         | 5       |        | pА         |
| Input Offset Current         | los                      |                                            |     |         | 5       |        | pА         |
| Common-Mode Voltage Range    | Vсм                      |                                            |     | V⁻- 0.1 |         | V++0.1 | V          |
| Common-Mode Rejection Ratio  | CMRR                     | Vs=5.5V, V <sub>СМ</sub> =-0.1V~4V         |     | 67      | 83      |        | dB         |
|                              |                          | Vs=5.5V, V <sub>СМ</sub> =-0.1V~5.6V       |     | 60      | 75      |        | dB         |
|                              | Av                       | V₀=0.15V~4.85V , R∟=600Ω                   |     | 80      | 89      |        | dB         |
| Large Signal Voltage Gain    |                          | V₀=0.05V~4.95V , R∟=10kΩ                   |     | 94      | 102     |        | dB         |
|                              | Vo                       | D6000                                      | Vон |         | V*-0.14 |        | V          |
|                              |                          | RL-0002                                    | Vol |         | 0.007   |        | V          |
| Output Voltage               |                          | RL=10kΩ V <sub>OH</sub><br>V <sub>OL</sub> | Vон |         | V*-0.04 |        | V          |
|                              |                          |                                            | Vol |         | 0.003   |        | V          |
| Short Circuit Current        | lsc                      | Sourcing                                   |     | 53      | 75      |        | mA         |
| Snort-Circuit Current        |                          | Sinking                                    |     | 53      | 85      |        | mA         |
| Slew Rate                    | SR                       |                                            |     |         | 8.5     |        | V/µs       |
| Gain-Bandwidth Product       | GBW                      |                                            |     |         | 7       |        | MHz        |
| Input Voltage Noise Density  | en                       | f = 1kHz                                   |     |         | 15      |        | nV/<br>√Hz |



### **TYPICAL APPLICATION CIRCUIT**



Figure 1. Differential Amplifier

Figure 1 Is the differential amplifier. If the resistors ratios are equal (R4/R3=R2/R1), then  $V_{OUT}=(V_P-V_N)\times R2/R1+V_{REF}$ .





Figure 2 Is the low pass filter. It's DC gain is -R2/R1 and the -3dB corner frequency is  $1/2\pi R_2C$ .



# ULV722

### TYPICAL CHARACTERISTICS





UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

