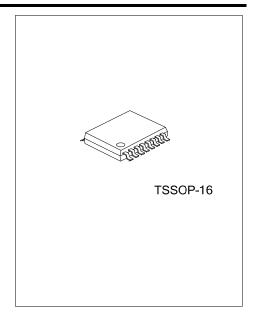


UCA9546 Preliminary CMOS IC

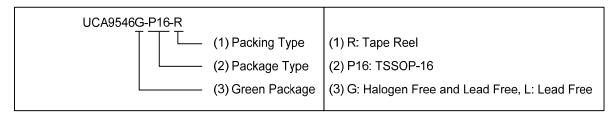
4-CHANNEL I2C AND SMBUS SWITCH WITH RESET **FUNCTION**

DESCRIPTION

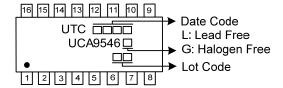

The UTC UCA9546 is a guad bidirectional translating switch controlled via the I²C bus. The SCL/SDA upstream pair fans out to four downstream pairs, or channels. Any individual SCn/SDn channel or combination of channels can be selected, determined by the contents of the programmable control register.

An active-low reset (RESET) input allows the UTC UCA9546 to recover from a situation in which one of the downstream I2C buses is stuck in a low state. Pulling RESET low resets the I2C state machine and causes all the channels to be deselected, as does the internal power-on reset function.

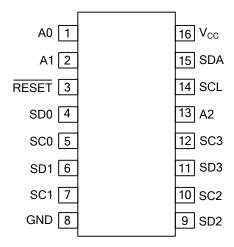
The pass gates of the switches are constructed such that the V_{CC} pin can be used to limit the maximum high voltage which is passed by the UCA9546. This allows the use of different bus voltages on each pair, so that 1.8V or 2.5V or 3.3V parts can communicate with 5V parts without any additional protection. External pull-up resistors pull the bus up to the desired voltage level for each channel. All I/O pins are 5.5V tolerant.


FEATURES

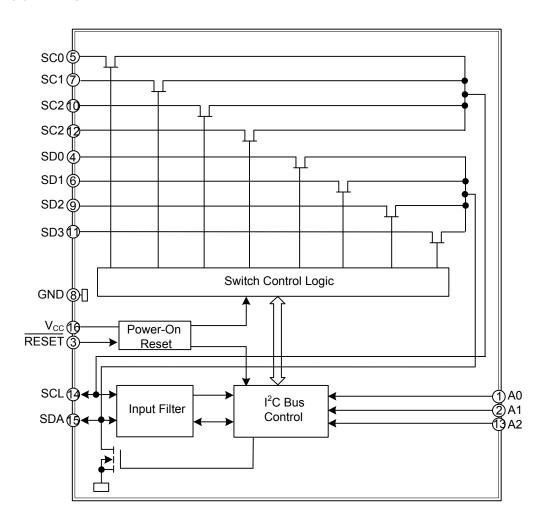
- * 1-of-4 Bidirectional Translating Switches
- * I²C Bus and SMBus Compatible
- * Active-Low Reset Input
- * 3 Address Pins, Allowing up to Eight Devices on the I²C Bus
- * Channel Selection Via I2C Bus
- * Power Up With All Switch Channels Deselected
- * Low RON Switches
- * Allows Voltage-Level Translation Between 1.8V, 2.5V, 3.3V, and 5V Buses
- * No Glitch on Power Up
- * Supports Hot Insertion
- * Low Standby Current
- * Operating Power-Supply Voltage Range of 2.3 V to 5.5 V
- * 5.5V Tolerant Inputs
- * 0 to 400kHz Clock Frequency



■ ORDERING INFORMATION


Ordering	Number	Doolsono	Dealine
Lead Free	Halogen Free	Package	Packing
UCA9546L-P16-R	UCA9546G-P16-R	TSSOP-16	Tape Reel

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	A0	Address input 0. Connect directly to V _{CC} or ground
2	A1	Address input 1. Connect directly to V _{CC} or ground
3	RESET	Active low reset input. Connect to V _{CC} through a pullup resistor, if not used.
4	SD0	Serial data 0. Connect to V _{CC} through a pullup resistor
5	SC0	Serial clock 0. Connect to V _{CC} through a pullup resistor
6	SD1	Serial data 1. Connect to V _{CC} through a pullup resistor
7	SC1	Serial clock 1. Connect to V _{CC} through a pullup resistor
8	GND	Ground
9	SD2	Serial data 2. Connect to V _{CC} through a pullup resistor
10	SC2	Serial clock 2. Connect to V _{CC} through a pullup resistor
11	SD3	Serial data 3. Connect to V _{CC} through a pullup resistor
12	SC3	Serial clock 3. Connect to V _{CC} through a pullup resistor
13	A2	Address input 2. Connect directly to V _{CC} or ground
14	SCL	Serial clock line. Connect to V _{CC} through a pullup resistor
15	SDA	Serial data line. Connect to V _{CC} through a pullup resistor
16	Vcc	Supply power

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage Range	V_{CC}	-0.5 ~ 7	V
Input Voltage Range (Note 2)	VI	-0.5 ~ 7	>
Input Current	II	±20	mA
Output Current	lo	±25	mA
Continuous Current Through V _{CC}		±100	mA
Continuous Current Through GND		±100	mA
Total Power Dissipation	P _{TOT}	400	mW
Operating Free-Air Temperature Range	T _A	-40 ~ +85	°C
Storage Temperature	T _{STG}	-65~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	110	°C/W

■ RECOMMENDED OPERATING CONDITIONS (NOTE)

PARAMETER		SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage		V_{CC}	2.3		5.5	V
	SCL, SDA	.,	0.7 × V _{CC}		6	V
High-Level Input Voltage	A2-A0, RESET	V_{IH}	0.7 × V _{CC}		V _{CC} +0.5	V
	SCL, SDA	.,	-0.5		0.3×V _{CC}	V
Low-Level Input Voltage	A2-A0, RESET	V_{IL}	-0.5		0.3×V _{CC}	٧
Operating Free-Air Temperature		T _A	-40		+85	°C

Note: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

^{2.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAI	METER	SYMBOL	SYMBOL TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
Power-On Reset	ower-On Reset Voltage (Note 2) VPOR No Load, VI=VCC or GND, VCC=VPOR		GND, V _{CC} =V _{POR}		1.6		V	
			V _{CC} =5V			3.6		V
			V _{CC} =4.5V~ 5.5V		2.6		4.5	V
Consider to Contract N	-14	\	V _{CC} =3.3V	$V_{SWin}=V_{CC}$		1.9		V
Switch Output V	ollage	V_{pass}	V _{CC} =3V~3.6V	$I_{SWout} = -100 \mu A$	1.6		2.8	V
			V _{CC} =2.5V			1.5		V
			V _{CC} =2.3V~2.7V		1.1		2	V
Low-Level	001 004		\/ 0.0\/ 5.5\/	V _{OL} =0.4V	3	7		mA
Output Current	SCL, SDA	l _{OL}	V _{CC} =2.3V~5.5V	V _{OL} =0.6V	6	10		mA
	SCL, SDA						±1	μΑ
	SC3-SC0,						. 4	
Input Leakage	SD3-SD0	II	V _{CC} =2.3V~ 5.5V	V _I =V _{CC} or GND			±1	μΑ
	A2-A0	•					±1	μΑ
	RESET						±1	μΑ
		Icc	V _{CC} =5.5V			55		μA
Operating Mode	f _{SCI} =100kHz		V _{CC} =3.6V	$V_I = V_{CC}$ or GND,		55		μA
			V _{CC} =2.7V	l ₀ =0		55		μA
	Low Inputs High Inputs		V _{CC} =5.5V			0.2	2	μA
			V _{CC} =3.6V	V _I =GND, I _O =0 V _I =V _{CC} , I _O =0		0.1	1.3	μA
			V _{CC} =2.7V			0.1	1.1	μA
Standby Mode			V _{CC} =5.5V			0.2	2	μA
			V _{CC} =3.6V			0.1	1.3	μA
			V _{CC} =2.7V			0.1	1.1	μA
			SCL or SDA Input at 0.6V, Other			00	50	
			Inputs at V _{CC} or GND			20	50	μA
Supply-Current	SCL, SDA	٨١	SCL or SDA input at					
Change	SCL, SDA	ΔI_{CC}	V _{CC} -0.6V, Other	V _{CC} =2.3V~ 5.5V		20	50	
			Inputs at V _{CC} or	V _{CC} -2.3V~ 5.5V		20	50	μA
			GND					
Input	A2-A0	0	\/ =2.2\/. F.F\/	\/ =\/		4.5		pF
Capacitance	RESET	Cı	V _{CC} =2.3V~5.5V	V _I =V _{CC} or GND		4.5		pF
0.1.1	SCL, SDA	0	V _{CC} =2.3V~5.5V			15		pF
Output Capacitance	SC3-SC0, SD3-SD0	C _{IO(OFF)} (Note 3)	V _{CC} =2.3V~5.5V	V _I =V _{CC} or GND, Switch OFF		6		pF
			V _{CC} =4.5V~5.5V	V _O =0.4V,	4	12	20	Ω
Cwitch On Ctata	Decistores	В	V _{CC} =3V~3.6V	I _O =15mA	5	15	25	Ω
Switch On-State Resistance		R _{ON}		V _O =0.4V, I _O =10mA	7	21	50	Ω

Notes: 1. All typical values are at nominal supply voltage (2.5-V, 3.3-V, or 5-V V_{CC}), $T_A = 25^{\circ}C$.

- 2. The power-on reset circuit resets the I^2C bus logic with $V_{CC} < V_{POR}$. V_{CC} must be lowered to 0.2 V to reset the device.
- 3. $C_{io(ON)}$ depends on internal capacitance and external capacitance added to the SCn lines when channels(s) are ON

■ I²C INTERFACE TIMING REQUIREMENTS

(T_A=25°C, unless otherwise specified) (see Figure 1)

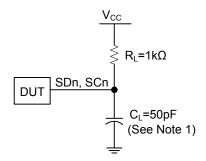
PARAMETER		SYMBOL		STANDARD MODE I ² C BUS		FAST MODE I ² C BUS	
			MIN	MAX	MIN	MAX	
I ² C Clock Frequency		f _{scl}	0	100	0	400	kHz
I ² C Clock High Time		$t_{\sf sch}$	4		0.6		μs
I ² C Clock Low Time		t_{scl}	4.7		1.3		μs
I ² C Spike Time		t_{sp}		50		50	ns
I ² C Serial-Data Setup Time	е	t_{sds}	250		100		ns
I ² C Serial-Data Hold Time		t _{sdh}	0 (Note 1)		0 (Note 1)		μs
I ² C Input Rise Time		t _{icr}		1000		300	ns
I ² C Input Fall Time		t _{icf}		300		300	ns
I ² C Output Fall Time	10-pF to 400-pF Bus	t_{ocf}		300		300	ns
I ² C Bus Free Time betwee	n Stop and Start	t _{buf}	4.7		1.3		μs
I ² C Start or Repeated Star	t Condition Setup	t_{sts}	4.7		0.6		μs
I ² C Start or Repeated Star	t Condition Hold	t_{sth}	4		0.6		μs
I ² C Stop Condition Setup		t_{sps}	4		0.6		μs
Valid-Data Time (High to Low) (Note 2)	SCL Low to SDA Output Low Valid	$t_{\text{vdL}(\text{Data})}$		1		1	μs
Valid-Data Time (Low to High) (Note 2)	SCL Low to SDA Output High Valid	t _{vdH(Data)}		0.6		0.6	μs
Valid-Data Time of ACK Condition	ACK Signal from SCL Low to SDA Output Low	$t_{\text{vd(ack)}}$		1		1	μs

Notes: 1. A device internally must provide a hold time of at least 300 ns for the SDA signal (referred to as the V_{IH} min of the SCL signal), in order to bridge the undefined region of the falling edge of SCL.

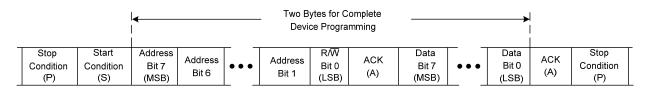
■ **SWITCHING CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

 $(C_L \le 100 pF, unless otherwise specified)$ (see Figure 1).

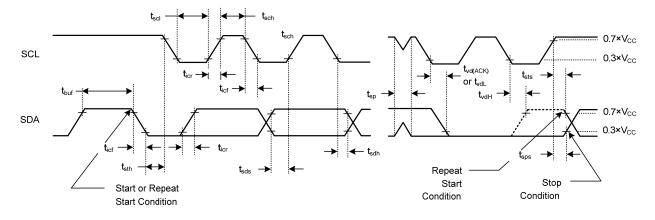
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Propagation Delay From Input	1	V _{CC} =2.3V, C _L =50pF		12	25	ns
(SDA or SCL) to Output (SDn or SCn)	ι _{PD}	V _{CC} =5.5V, C _L =50pF		6	11	ns


■ INTERRUPT AND RESET TIMING REQUIREMENTS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Pulse Duration, RESET Low	t_WL		6			ns
RESET Time (SDA Clear)	t _{rst} (Note 1)				500	ns
Recovery Time from RESET to Start	t _{REC(STA)}		0			ns


Note: t_{rst} is the propagation delay measured from the time the \overline{RESET} pin is first asserted low to the time the SDA pin is asserted high, signaling a stop condition. It must be a minimum of t_{WL} .

^{2.} Data taken using a 1-k Ω pull-up resistor and 50-pF load (see Figure 1).


■ PARAMETER MEASUREMENT INFORMATION

I²C Port Load Configuration

BYTE	DESCRIPTION
1	I²C address + R/₩
2	Control register data

Voltage Waveforms

Notes 1. C_L includes probe and jig capacitance.

- 2. All input pulses are supplied by generators having the following characteristics: PRR \leq 10MHz, Z_0 =50 Ω , t_r/t_f =30ns.
- 3. The outputs are measured one at a time, with one transition per measurement.

Figure 1. I²C Interface Load Circuit, Byte Descriptions, and Voltage Waveforms

■ PARAMETER MEASUREMENT INFORMATION

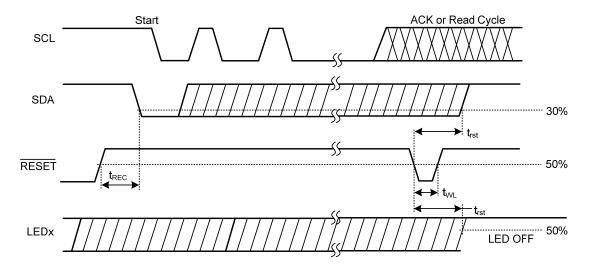


Figure 2. Reset Timing

■ TYPICAL APPLICATION CIRCUIT

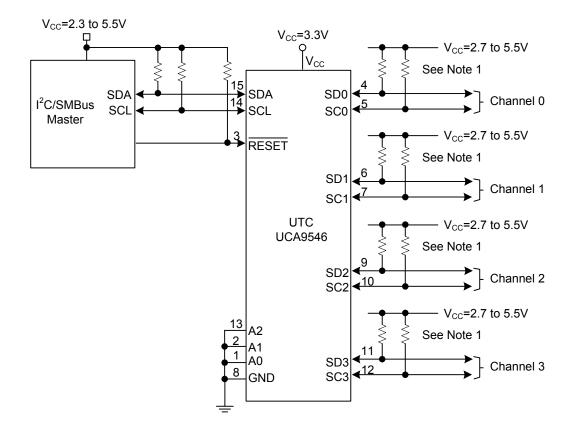


Figure 3. Typical Application

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.