

LINEAR INTEGRATED CIRCUIT

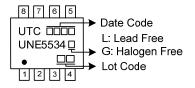
LOW-NOISE OPERATIONAL AMPLIFIER

DESCRIPTION

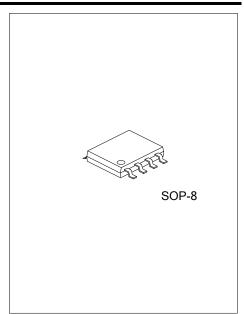
The UTC **UNE5534** is high-performance operational amplifiers with excellent DC/AC and very low noise characteristics. It features high output-drive capability, high unity-gain and maximum-output-swing bandwidths, low distortion, high slew rate.

This operational amplifier is compensated internally for a gain equal to or greater than three. Optimization of the frequency response for various applications can be obtained by use of an external compensation capacitor between COMP and COMP/BAL. The device features input-protection diodes, output short-circuit protection, and offset-voltage nulling capability with use of the BALANCE and COMP/BAL pins.

FEATURES

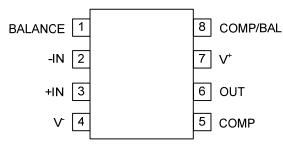

- * Supply Voltage: ±5~±20V
- * Supply Current/Amplifier:8 mA (Max.)
- * Input Offset Voltage:4mV (Max)
- * Slew Rate: 7.8V/µs (Typ.)
- * Offset Nulling Capability
- * External Compensation Capability.

ORDERING INFORMATION

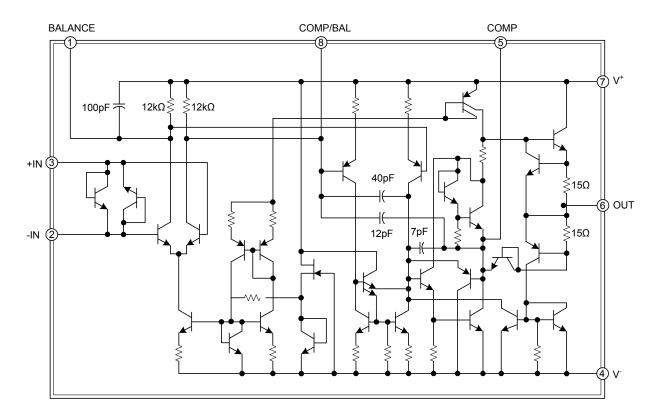

Ordering Number		Deskass	Decking	
Lead Free	Halogen Free	Package	Packing	
UNE5534L-S08-R	UNE5534G-S08-R	SOP-8	Tape Reel	

UNE5534G-S08-R	
(1)Packing Type	(1) R: Tape Reel
(2)Package Type	(2) S08: SOP-8
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING



LINEAR INTEGRATED CIRCUIT


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	BALANCE	External frequency compensation
2	-IN	Inverting Input
3	+IN	Non-inverting Input
4	V	Negative power supply
5	COMP	External offset voltage adjustment
6	OUT	Output
7	V^{+}	Positive power supply
8	COMP/BAL	External offset voltage adjustment/External frequency compensation

BLOCK DIAGRAM

Input Current (Note 4)

Junction Temperature

-10 ~ 10

+150

UNIT V V V

> mA °C

■ ABSOLUTE MAXIMUM RATING

_	over operating nee-air temperature range (unles	s otherwise sp	Jeched)
	PARAMETER	SYMBOL	RATINGS
	Cumply) (altage (Nate 1)	V ⁺	0 ~ 22
	Supply Voltage (Note 1)	V	-22 ~ 0
	Differential Input Voltage t (Note 2, 3)	V _{ID}	Supply Voltage

over operating free-air temperature range (unless otherwise specified)

Storage Temperature Range T_{STG} $-65 \sim +150$ °CNotes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

 $T_{\rm J}$

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. All voltage values, except differential voltages, are with respect to the midpoint between V⁺ and V⁻.

3. The magnitude of the input voltage must never exceed the magnitude of the supply voltage.

4. Excessive input current will flow if a differential input voltage in excess of approximately 0.6V is applied between the inputs, unless some limiting resistance is used.

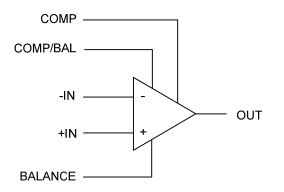
5. The output may be shorted to ground or either power supply. Temperature and/or supply voltages must be limited to ensure the maximum dissipation rating is not exceeded.

RECOMMENDED OPERATING CONDITIONS

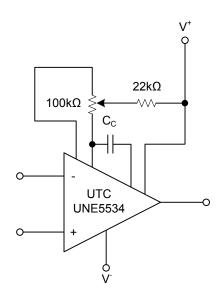
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V ⁺	5		15	V
Supply Voltage	V	-5		-15	V
Operating Free-Air Temperature	T _{OPR}	-40		+125	°C

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	125	°C/W

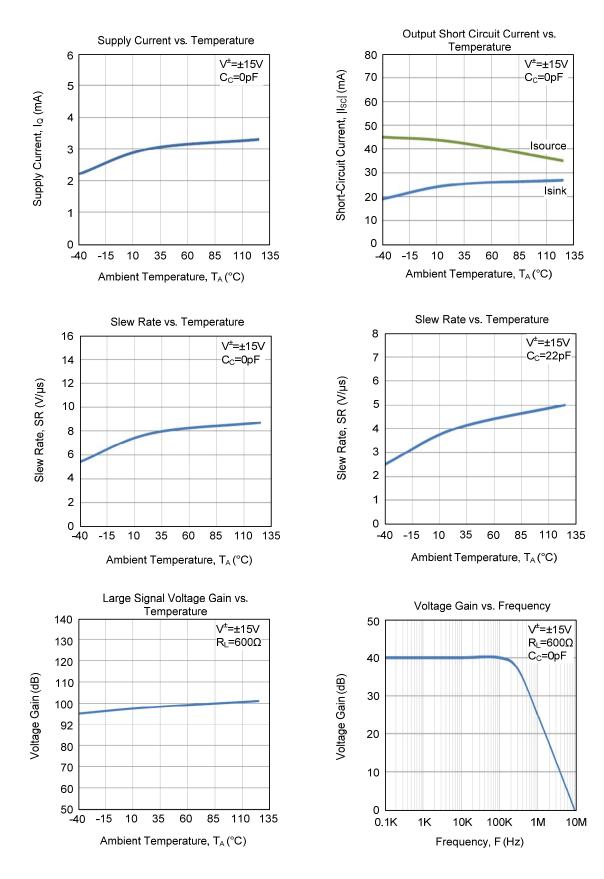

■ ELECTRICAL CHARACTERISTICS (V[±] = ±15V, T_A=25°C unless otherwise specified)

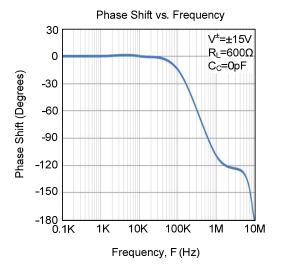
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Current/Amplifier	lq	V _O =0, No Load.			3	8	mA
Power Supply Rejection Ratio	PSRR	$V^{\pm} = \pm 9V \sim \pm 15V, V_{O} = 0$		80	115		dB
Input Offset Voltage	Vos	V _O =0			1	4	mV
Input Bias Current	I _B	V _o =0			700	1500	nA
Input Offset Current	l _{os}	V ₀ =0			40	300	nA
Common-Mode Voltage Range	V _{CM}			- 12		12	V
Common-Mode Rejection Ratio	CMRR	-12V < V _{IC} < 12V		70	100		dB
Large Signal Voltage Gain	Av	$R_L \ge 2k\Omega, V_O=\pm 10V$		80	97		dB
Large Signal Voltage Gain		$R_L \ge 600\Omega$, $V_O=\pm 10V$		80	95		dB
	Vo	R _L ≥ 600Ω	V _{OH}	12	13.5		V
Output Voltage			V _{OL}		-12.9	-12	V
Short-Circuit Current	I _{SC}	Sourcing			43		mA
		Sinking			25		mA
Slew Rate	SR	C _C =0			7.8		V/µs
		C _C =22pF			4		V/µs
Gain-Bandwidth Product	GBW	C _C =0			9		MHz
		C _C =22pF			5.5		MHz
Input-Referred Voltage Noise	en	f=1kHz			5		nV/ √Hz
Input-Referred Current Noise	i _n	f=1kHz			1		pA/ √Hz



LINEAR INTEGRATED CIRCUIT

SIMPLIFIED SCHEMATIC


TYPICAL APPLICATION CIRCUIT


LINEAR INTEGRATED CIRCUIT

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS (Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

