

UMX82B96

Preliminary

LINEAR INTEGRATED CIRCUIT

I²C COMPATIBLE DUAL BIDIRECTIONAL BUS BUFFER

DESCRIPTION

The UTC **UMX82B96** is a bus buffer that supports bidirectional data transfer between an I^2C bus and a range of other bus configurations with different voltage and current levels.

One of the advantages of the UTC **UMX82B96** is that it supports longer cables/traces and allows for more devices per I^2C bus because it can isolate bus capacitance such that the total loading (devices and trace lengths) of the new bus or remote I^2C nodes are not apparent to other I^2C buses (or nodes). The restrictions on the number of I^2C devices in a system due to capacitance, or the physical separation between them, are greatly improved.

The device is able to provide galvanic isolation (optocoupling) or use balanced transmission lines (twisted pairs), because separate directional Tx and Rx signals are provided. The Tx and Rx signals may be connected directly (without causing bus latching), to provide an bidirectional signal line with I²C properties (open-drain driver). Likewise, the Ty and Ry signals may also be connected together to provide an bidirectional signal line with I²C properties (open-drain driver). This allows for a simple communication design, saving design time and costs.

FEATURES

- * Operating Power-Supply Voltage Range of 2V to 15V
- * Can Interface Between I²C Buses Operating at Different Logic Levels (2V to 15V)
- * Outputs on the Transmission Side (Tx/Ty) Have High Current Sink Capability for Driving Low-Impedance or High-Capacitive Buses
- * Interface With Optoelectrical Isolators and Similar Devices That Need Unidirectional Input and Output Signal Paths by Splitting I²C Bus Signals Into Pairs of Forward (Tx/Ty) and Reverse (Rx/Ry) Signals
- * 400-kHz Fast I²C Bus Operation Over at Least 20 Meters of Wire

Preliminary

LINEAR INTEGRATED CIRCUIT

ORDERING INFORMATION

Ordering	Number	Deskase	Decking
Lead Free	Halogen Free	Раскаде	Packing
UMX82B96L-S08-R	UMX82B96G-S08-R	SOP-8	Tape Reel

MARKING

UMX82B96

Preliminary

■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	Sx	Serial data bus or SDA. Connect to V_{CC} of I ² C master through a pull up resistor.
2	Rx	Receive signal. Connect to V _{CC} of UTC UMX82B96 through a pull up resistor.
3	Тх	Transmit signal. Connect to V_{CC} of UTC UMX82B96 through a pull up resistor.
4	GND	Ground
5	Ту	Transmit signal. Connect to V_{CC} of UTC UMX82B96 through a pull up resistor.
6	Ry	Receive signal. Connect to V _{CC} of UTC UMX82B96 through a pull up resistor.
7	Sy	Serial clock bus or SCL. Connect to V _{CC} of I ² C master through a pull up resistor.
8	V _{cc}	Supply voltage

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (Unless otherwise specified.)

PARAM	ETER	SYMBOL	RATINGS	UNIT
Supply Voltage on V _{CC} Pin		V _{cc}	-0.3 ~ 18	V
Voltage on Duffered Input	Sx or Sy (SDA or SCL)	N/	-0.3 ~ 18	V
Voltage on Buffered Input	Rx or Ry	VI	-0.3 ~ 18	V
Voltage on Buffered Output	Sx or Sy (SDA or SCL)	N/	-0.3 ~ 18	V
	Tx or Ty	Vo	-0.3 ~ 18	V
	Sx or Sy		250	mA
Continuous Output Current	Tx or Ty	IO	250	mA
Continuous Current through V _{CC} or GND		Icc	250	mA
Operating Free-Air Temperature		T _A	-40 ~ +85	°C
Storage Temperature		T _{STG}	-55 ~ +165	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS

				UNIT			
PARAMETER			STMBOL	MIN	TYP	MAX	
Supply Voltage			Vcc	2		15	V
Low-Level Output Current	Sx, Sy	V _{Sx} , V _{Sy} =1V, V _{Rx} , V _{Ry} ≤ 0.42V				3	mA
	Tx, Ty V _{Sx} , V _{Tx} ,		4V, ^{IOL} 4V			30	mA
Maximum	Sx, Sy	V _{Tx} , V _{Ty} =0.4V				15	V
Input/Output Voltage Level	Тх, Ту	V _{Sx} , V _{Sy} =0.4V	V _{IOmax}			15	V
Low-Level Input Voltage Difference	Sx, Sy		VILdiff			0.4	V

THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	120	°C/W

ELECTRICAL CHARACTERISTICS

(V_{CC} = 2.3V ~ 5.5V, 15V, voltages are specified with respect to GND, unless otherwise specified)

					-	T _A =25°	Ċ	T _A =-40~+85°C			
PARAMETI	ER	SYMBOL	TEST CO	ONDITIONS	MIN	TYP (Note 1)	MAX	MIN	TYP	MAX	UNIT
Temperature Coefficient of Input Thresholds	Sx, Sy	$\Delta V / \Delta T_{IN}$				-2			-2		mV/°C
Low-Level	Sx Sv	Voi	I _{Sx} , I _{Sγ} =3mA		0.75	0.88	1	0.6		1.1	V
Output Voltage	ол, су	VOL	I _{Sx} , I _{Sγ} =0.2mA		0.6	0.73	0.8	0.5		0.9	V
Temperature Coefficient of Output Low Levels (Note 2)	Sx, Sy	ΔV/ΔΤ _{ΟυΤ}	I _{Sx} , I _{Sy} =0.2mA			-1.8			-1.8		mV/°C
Quiescent Supply	Current	I _{cc}	Sx=Sy=V _{CC}			0.9	1.8			2	mA
Additional Supply Current Per Pin Low	Тх, Ту	ΔI _{CC}				1.7	2.75			3	mA
			V _{Sx} , V _{Sy} >2V, V	_{Rx} , V _{Ry} =Low	7	20		5.5			mA
Dynamic Output Sink Capability			V _{Sx} , V _{Sy} =2.5V V _{Rx} , V _{Ry} =High	V _{CC} =2.3V~2.7V		0.1	1			1	μA
on I ² C Bus	Sx, Sy	I _{IOS}	V _{Sx} , V _{Sy} =5V	V _{CC} =3V~3.6V		0.1	1			1	μA
Leakage Current			V _{Rx} , V _{Ry} =High	V _{CC} =4.5V~5.5V		0.1	1			1	μA
on I ² C Bus			V _{Sx} , V _{Sy} =15V V _{Rx} , V _{Ry} =High	V _{CC} =15V		0.1	1			1	μA
Dynamic Output Sink Capability on Buffered Bus			V_{Tx} , V_{Ty} >1V, V_{Sx} , V_{Sy} =Low C I ² Cbus=0.4V	Dn	60	80		60			mA
	Тх, Ту	I _{IOT}	V _{Tx} , V _{Ty} =V _{CC} =2.5V, V _{Sx} , V _{Sy} =High	V _{CC} =2.3V~2.7V		0.1	1			1	μA
Leakage Current			V _{Tx} , V _{Ty} =V _{CC} =3.3V, V _{Sx} , V _{Sy} =High	V _{CC} =3V~3.6V		0.1	1			1	μA
on Buffered Bus			V _{Tx} , V _{Ty} =V _{CC} =5V, V _{Sx} , V _{Sy} =High	V _{CC} =4.5V~5.5V		0.1	1			1	μA
			V _{Tx} , V _{Ty} =V _{CC} =15V, V _{Sx} , V _{Sy} =High	V _{CC} =15V		0.1	1			1	μA
Input Current from I ² C Bus	Sx, Sy	_	Bus Low, V _{Rx} , '	V _{Ry} =High		-1				1	μA
Input Current from Buffered Bus		h	Bus Low, V _{Rx} , '	V _{Ry} =0.4V		-1				1	μA
Leakage Current on Buffered Bus Input	кх, ку		V _{Rx} , V _{Ry} =V _{CC}			-1				1.5	μA

UMX82B96

LINEAR INTEGRATED CIRCUIT

■ ELECTRICAL CHARACTERISTICS (Cont.)

(V_{CC} = 2.3V ~ 5.5V, 15V, voltages are specified with respect to GND, unless otherwise specified)

				T _A =25°C		T _A =-40~+85°C				
PARAMET	PARAMETER SYME		TEST CONDITIONS		TYP (Note 1)	MAX	MIN	TYP	MAX	UNIT
S Input Threshold	Sx, Sy		Input Logic Level High Threshold (Note 3) on Normal I ² C Bus		0.65	0.85			0.9	V
			Input Logic Level Low Threshold (Note 3) on Normal I ² C Bus	0.6	0.65		0.3			V
		VIT	Input Logic Level High	0.58× V _{CC}			0.58× V _{CC}			V
	Rx, Ry		Input Threshold		0.5× V _{CC}					V
			Input Logic Level Low			0.42× V _{CC}			0.42× V _{CC}	V
Input/Output Logic Level Difference (Note 4)	Sx, Sy	V _{IOdiff}	(V _{Sx} Output Low at 3mA) – (V _{Sx} Input High Max) for I ² C Applications	100	150		100			mV
V _{CC} Voltage at which all Buses are Released	Sx, Sy Tx, Ty	V _{IOrel}	Sx, Sy are Low, V _{CC} Ramping, Voltage on Tx, Ty Lowered until Released	1			1			v
Temperature Coe of Release Voltag	efficient ge	$\Delta V / \Delta T_{REL}$			-4			-4		mV/°C
Input Capacitance	Rx, Ry	C _{IN}			2.5	4			4	pF

Notes: 1. Typical value is at V_{CC} = 2.5V, T_A =25°C.

2. The output logic low depends on the sink current.

3. The input logic threshold is independent of the supply voltage.

4. The minimum value requirement for pullup current, 200µA, ensures that the minimum value for V_{SX} output low always exceeds the minimum V_{Sx} input high level to eliminate any possibility of latching. The specified difference is specified by design within any device. While the tolerances on absolute levels allow a small probability that the low from one Sx output is recognized by an Sx input of another. UTC UMX82B96, this has no consequences for normal applications.

■ SWITCHING CHARACTERISTICS

(V_{CC} = 5V, T_A =25°C, no capacitive loads, voltages are specified with respect to GND, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Buffer Delay Time On Falling Input for Input V_{Sx} (or V_{Sy}) = Input Switching Threshold to Output V_{Tx} (or V_{Ty}) Output Falling 50% of V_{LOAD} (Note 1)	t _{pzl}	R _{Tx} Pullup = 160Ω, C _{Tx} = 7pF + Board Trace Capacitance		90		ns
Buffer Delay Time On Rising Input for Input V_{Sx} (or V_{Sy}) = Input Switching Threshold to Output V_{Tx} (or V_{Ty}) Output Reaching 50% of V_{LOAD} (Note 2)	t _{plz}	R _{Tx} Pullup = 160Ω, C _{Tx} = 7pF + Board Trace Capacitance		30		ns
Buffer Delay Time On Falling Input for Input V_{Rx} (or V_{Ry}) = Input Switching Threshold to Output V_{Sx} (or V_{Sy}) Output Falling 50% of V_{LOAD} (Note 3)	t _{pzl}	R_{Sx} Pullup = 1500 Ω , C_{Tx} = 7pF + Board Trace Capacitance		150		ns
Buffer Delay Time On Rising Input for Input V_{Rx} (or V_{Ry}) = Input Switching Threshold to Output V_{Sx} (or V_{Sy}) Output Reaching 50% of V_{LOAD} (Note 4)	t _{plz}	R _{Sx} Pullup = 1500Ω, C _{Tx} = 7pF + Board Trace Capacitance		150		ns

Notes: 1. The fall time of V_{Tx} from 5V to 2.5V in the test is approximately 15ns.

2. The rise time of V_{Tx} from 0V to 2.5V in the test is approximately 20ns.

3. The fall time of V_{Sx} from 5V to 2.5V in the test is approximately 50ns.

4. The rise time of V_{Sx} from 0.9V to 2.5V in the test is approximately 70ns.

TYPICAL APPLICATION CIRCUIT

Fig. 1 Interfacing an I²C Type of Bus With Different Logic Levels

Fig. 2 Galvanic Isolation of I²C-Bus Nodes via Opto-Couplers

TYPICAL APPLICATION CIRCUIT (Cont.)

Fig. 3 Long-Distance I²C-Bus Communications

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

