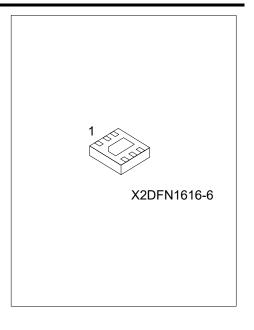


83NXX cmos ic

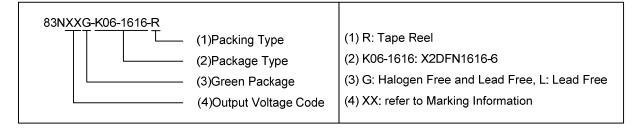
LOW-POWER, PUSH-BUTTON CONTROLLERS WITH CONFIGURABLE DELAY

DESCRIPTION


The UTC **83NXX** are low-current, ultrasmall, push-button reset timers. These devices use a long timing setup delay to provide the intended system reset, and avoid resets from short push-button closures or key presses. This reset configuration also allows for differentiation between software interrupts and hard system resets.

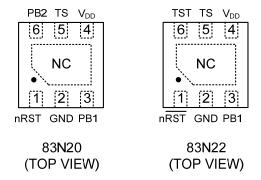
The UTC **83N20** monitors two inputs (PB1 and PB2) and output an active-low reset pulse signal (RST) when both inputs are low for the selected time delay. For the UTC **83N20**, RST remains low until one of the PBx inputs is released. The need for a dedicated reset button is eliminated because two inputs are used to ensure reset. The UTC **83N22** monitors one input (PB1) and outputs an active-low reset pulse signal (RST) when PB1 is low for the selected time delay.

The UTC **83NXX** have an open-drain output that can be wire-ORed with other open-drain devices. The UTC **83NXX** operate from 1.6V to 6.5V over the -40°C to +105°C temperature range, and provide a precise, space-conscious micropower solution for system resetting needs.


■ FEATURES

- * Operating Range: 1.6V ~ 6.5V
- * Single (UTC 83N22) or Dual (UTC 83N20) Push-Button Inputs
- * Low Supply Current: 400nA (Typical)
- * Two-State Logic, User-Selectable Input Delay:
- -For Example: 7.5s and 0s
- -Multiple Timing Options Available
- * Fixed Time-out Pulse at RST: 400ms (Typical)
- -Other Timing Options Available on Request
- * Active Low, Open-Drain Output

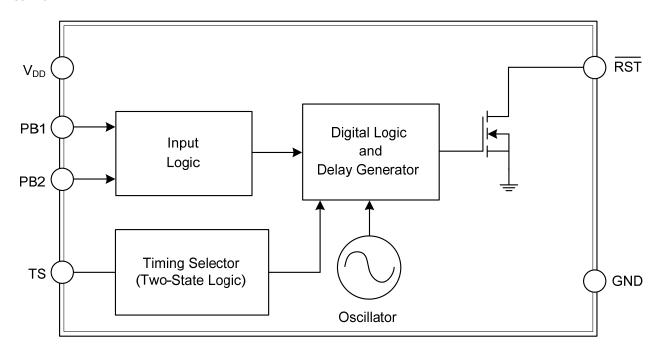
ORDERING INFORMATION


Ordering	Number	Dealters	Dealine	
Lead Free Halogen Free		Package	Packing	
83NXXL-K06-1616-R 83NXXG-K06-1616-R		X2DFN1616-6	Tape Reel	

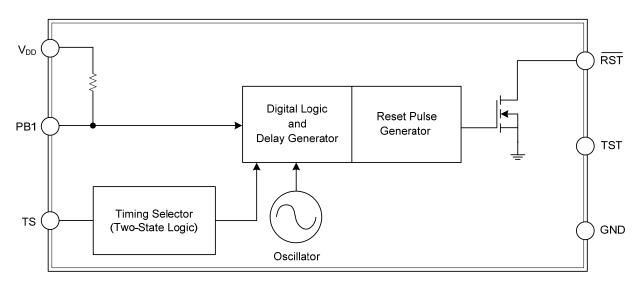
■ MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING		
X2DFN1616-6	20: 2.0V 22: 2.2V	● Voltage Code		

■ PIN CONFIGURATION



■ PIN DESCRIPTION


PIN NO.	PIN NAME	DESCRIPTION
1	RST	Active low, open-drain output. Reset is asserted (goes low) when both PB1 and PB2 are held low for longer than t _{TIMER} time (only PB1 for UTC 83N22). Reset is deasserted when either PBx input goes high.
2	GND	Ground.
3	PB1	Push-button input. PB1 and PB2 must be held low for greater than t _{TIMER} time to assert the reset output.
4	V_{DD}	Supply voltage input. Connect a 1.6V to 6.5V supply to V_{DD} to power the device. It is good analog design practice to place a $0.1\mu F$ ceramic capacitor close to this pin.
5	TS	Time delay selection input. Connect to V_{DD} or GND for different t_{TIMER} selections. In normal operation, the TS pin state should not be changed because it is intended to be permanently connected to either GND or V_{DD} . If switching the TS pin is required, it should be done during power off, or when either PBx input is high.
6 (83N20)	PB2	Second push-button input. PB1 and PB2 must be held low for greater than t_{TIMER} time to assert the reset output.
6 (83N22)	TST	Connect this pin to GND or V _{DD} during normal device operation.
Exposed Pad	NC	Thermal pad.

■ BLOCK DIAGRAM

83N20

83N22

ABSOLUTE MAXIMUM RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{DD}	-0.3 ~ 7	V
RST Voltage	$V_{\overline{RST}}$	-0.3 ~ 7	V
PB1, PB2 Voltage	V _{PB1} , V _{PB2}	-0.3 ~ 7	V
TS Voltage	V_{TS}	-0.3 ~ V _{DD} + 0.3	V
RST Current	I _{RST}	±20	V/ns
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETERS	SYMBOL	MIN	TYP	MAX	UNITS
Power-Supply Voltage	V_{DD}	1.6		6.5	V
SENSE Voltage	V _{TS}	0		V_{DD}	V
RESET Pin Voltage	V _{PB1} , V _{PB2}	0		6.5	V
RST Pin Voltage	V _{RST}	0		6.5	V
RST Pin Current	I _{RST}	0.00035		8	mA

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	360	°C/W

■ ELECTRICAL CHARACTERISTICS

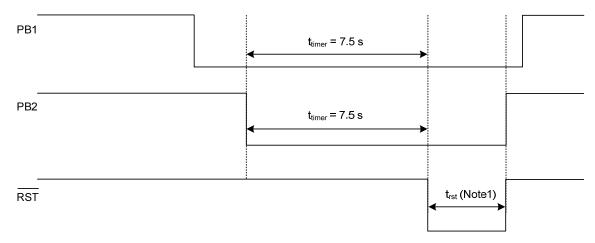
 $(1.6V \le V_{DD} \le 6.5V$, Typical values are $T_A=25^{\circ}C$, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Input Supply	V_{DD}			1.6		6.5	V
	Icc	V _{DD} =3.3V	001100		400		nA
		V _{DD} =6.5V	83N22			3.3	μΑ
Supply Current (Standby)		V _{DD} =3.3V	021120		350		nA
		V _{DD} =6.5V	83N20			3.4	μΑ
Supply Current (Active Timer)		PB1, PB2=0V, V _{DD} =6.5V	83N20		1	12	μΑ
(Note 1)		PB1=0V, V _{DD} =6.5V	83N22		30	136	μΑ
High-Level Input Voltage	V _{IH}	PB1 83N	837133	0.7			V
			OSINZZ	$\times V_{DD}$			V
		PB1, PB2	83N20	0.85			V
Low-Level Input Voltage	V _{IL}	PB1	83N22	0		0.35	V
		PB1, PB2	83N20	0		0.35	V
Input Current (PB1, PB2)	I _{PB}	PB1, PB2 = 0V or V _{DD}	83N20	-50		50	nA
		PB1=V _{DD}	83N22	-50		50	nA
Low-Level Output Voltage	V _{OL}	V _{DD} ≥ 4.5V, I _{SINK} =8mA				0.4	V
		V _{DD} ≥ 3.3V, I _{SINK} =5mA				0.3	V
		V _{DD} ≥ 1.6V, I _{SINK} =3mA				0.8	V
Open-Drain Output Leakage Current	I _{lkg(OD)}	High Impedance, V _{RST} =6.5V		-0.35		0.35	μA

Note: Includes current through pullup resistor between input pin (PB1) and supply pin (V_{DD}) for UTC 83N22.

■ TIMING REQUIREMENTS

All specifications are over the operating temperature range of -40°C < T_J < 125°C and 1.6V ≤ V_{DD} ≤ 6.5V, unless otherwise noted. Typical values are at T_J = 25°C and V_{DD} = 3.3V.


Caronine Hotea. Typical values							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Push-Button Timer (Note1)	t _{TIMER}			-20		20	%
		TS=GND	001100	6	7.5	9	s
		TS=V _{DD}	83N20	10	12.5	15	s
		TS=GND	83N22	6	7.5	9	S
		TS=V _{DD}			0		s
Reset Pulse Duration	t _{RST}			-20		20	%
		UTC 83N22		320	400	480	ms
Detection Delay (from Input to RST) (Note 2)	t _{DD}	For 0-s t _{TIMER} Condition			150		μs
Start-up Delay (Note 2)	tsD	V _{DD} Rising			300		μs

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. For devices with a 0-second delay when TS = V_{DD} , reset asserts in t_{DD} time when both PB inputs go low in this configuration. During start-up, if the PB inputs are low, reset asserts after a start-up time delay. This value is specified by design.

■ TIMING DIAGRAM

Note 1. For the UTC 83N20, t_{RST} is not a fixed time, but instead depends on one of the PB pins going high.

Figure 1. UTC 83N20 Timing Diagram

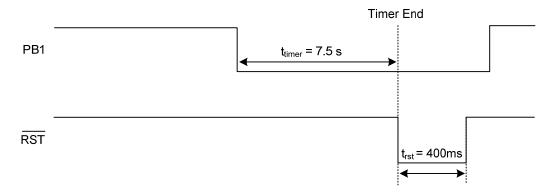
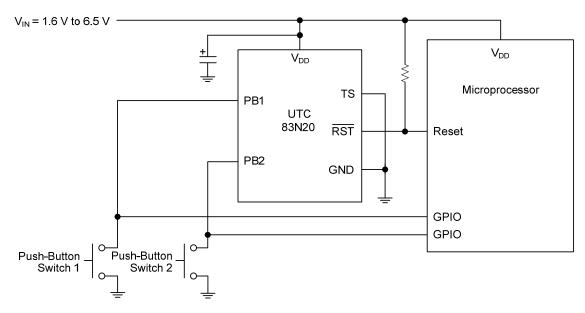
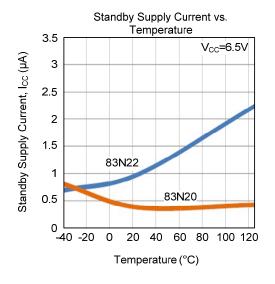



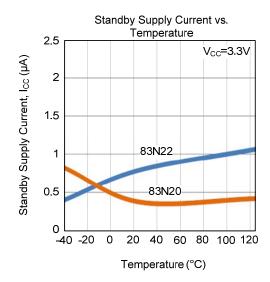
Figure 2. UTC 83N22 Timing Diagram

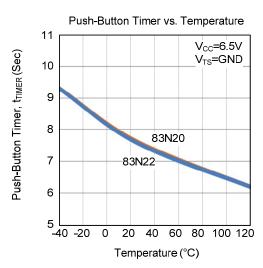
83NXX

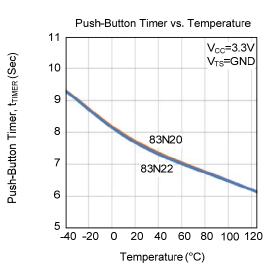
■ TYPICAL APPLICATION CIRCUIT

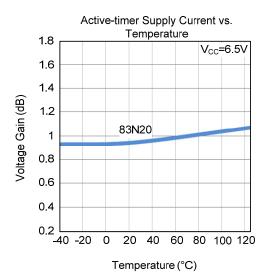
Note: Connect TS to V_{CC} or ground for different PB time delays. Connect one PB input to ground for use as a single channel.

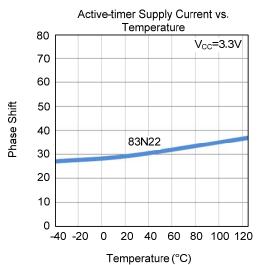

 $V_{IN} = 1.6 \text{ V to } 6.5 \text{ V} -$ IN System Power Load RST OUT ON Switch PB1 **GND** UTC Push-Button 83N22 Switch TS TST **GND**


Figure 3. UTC 83N20 Application Diagram


Note: Connect TS to $\ensuremath{V_{\text{DD}}}$ or ground for different PB time delays.


Figure 6. UTC 83N22 Application Diagram


■ TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.