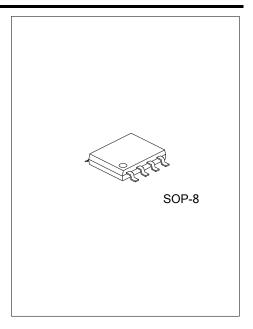
UNISONIC TECHNOLOGIES CO., LTD

OP37

LINEAR INTEGRATED CIRCUIT

LOW-NOISE, PRECISION, **HIGH SPEED OPERATIONAL AMPLIFIER**


DESCRIPTION

The UTC OP37 provides the same high performance as the UTC OP27, but the design is optimized for circuits with gains greater than five.

The UTC OP37 provides the low offset and drift of the OP07 plus higher speed and lower noise.

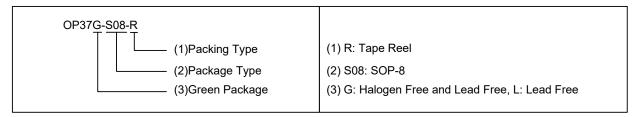
The low input bias current of 80nA and offset current of 75nA are achieved by using a bias-current cancellation circuit. Over the military temperature range this typically holds I_B and I_{OS} to 150nA and 135nA respectively.

The output stage has good load driving capability. A guaranteed swing of 10V into 600Ω and low output distortion make the UTC OP37 an excellent choice for professional audio applications.

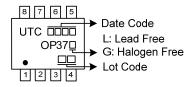
FEATURES

* Supply Voltage: ±4.0 ~ ±22.0V

* Supply Current/Amplifier: 6.2mA (Max.)

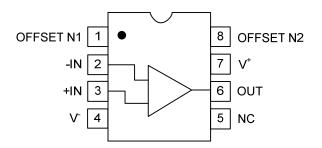

* Input Offset Voltage: 110µV (Max.)

* Slew Rate: 9.4V/µs (Typ.)


* Excellent CMRR: 120dB at V_{CM} of ±11V

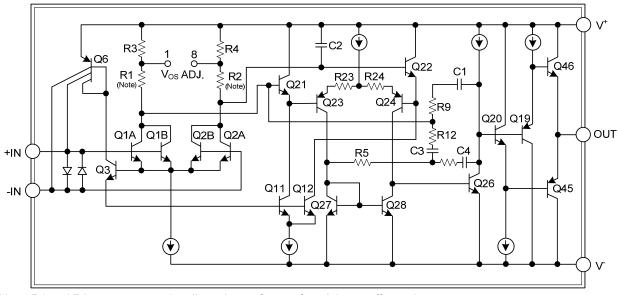
ORDERING INFORMATION

Ordering Number		Dealters	Dealting		
Lead Free	Halogen Free	Package	Packing		
OP37L-S08-R	OP37G-S08-R	SOP-8	Tape Reel		



MARKING

www.unisonic.com.tw 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OFFSET N1	External input offset voltage adjustment
2	-IN	Inverting
3	+IN	Non-Inverting
4	V	Negative Power supply
5	NC	No connect
6	OUT	Output
7	V ⁺	Positive power supply
8	OFFSET N2	External input offset voltage adjustment

■ BLOCK DIAGRAM

Note: R1 and R2 are permanently adjusted at wafer test for minimum offset voltage.

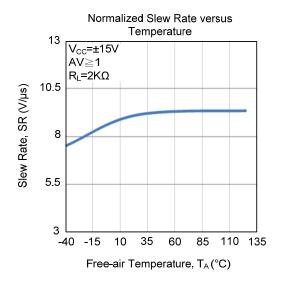
■ ABSOLUTE MAXIMUM RATING

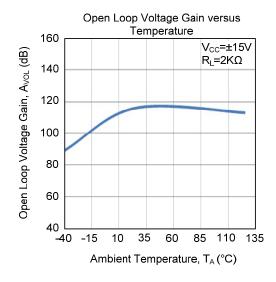
PARAMETER	ER SYMBOL RATINGS		UNIT
Supply Voltage	V ⁺ - V ⁻	±22	V
Differential Input Voltage (Note 1)		±0.7	V
Voltage at Input or Output Pin (Note 2)		±22	V
Junction Temperature	T _J	+150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

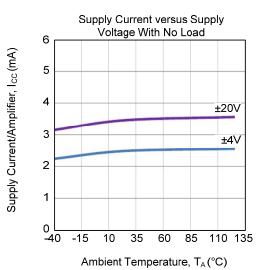
- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. The UTC **OP37**'s inputs are protected by back-to-back diodes. Current limiting resistors are not used in order to achieve low noise. If differential input voltage exceeds 0.7V, the input current should be limited to 25mA.
 - 3. For supply voltages less than 22V, the absolute maximum input voltage is equal to the supply voltage.

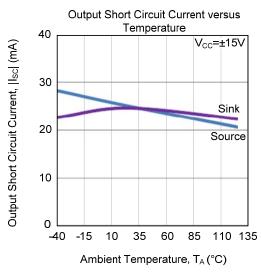
■ ELERECOMMENDED OPWRAING CONDITIONS

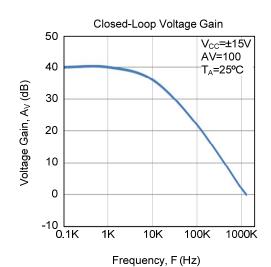
PARAMETER	SYMBOL	RATINGS	UNIT	
Supply Voltage	V ⁺ - V ⁻	±4 ~ ±22	V	
Operating Junction Temperature Range	T_OPR	-40 ~ +125	°C	

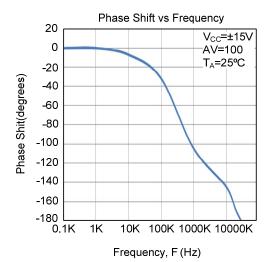

■ CTRICAL CHARACTERISTICS (V⁺ - V⁻ =±15V, T_A=25°C unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Supply Current/Amplifier	IQ				3.2	6.2	mA
Power Supply Rejection Ratio	er Supply Rejection Ratio PSRR V _S =±4V~±18V				125	150	dB
Input Offset Voltage (Note 1)	Vos				50	110	μV
Offset Adjustment Range		R _P =10kΩ			±4.0		mV
Input Bias Current	I _B				±70	±110	nA
Input Offset Current	Ios				12	80	nA
Common-Mode Voltage Range	V_{CM}			±11	±12.3		V
Common Mode Rejection Ratio	CMRR	V _{CM} =±11V		100	120		dB
Large Signal Voltage Gain	AV	R _L ≥600Ω, V _O =±10V		95	115		dB
Large Signal Voltage Gain	Λν	R _L ≥2kΩ, V _O =±10V	_	95	115		dB
	Vo	R _L ≥600Ω	V_{OH}	10	11.5		V
Output Voltage			V_{OL}		-11.5	-10	V
Output Voltage		R _L ≥2kΩ	V_{OH}	11.5	13.5		V
			V_{OL}		-13.5	-11.5	V
Slew Rate (Note 2)	SR	R _L ≥2kΩ			9.4		V/µs
Gain Bandwidth Product (Note 2)	GBW				40		MHz
	e _n	f _O =10Hz			3.8		nV/ √Hz
Input Noise Voltage Density (Note 3)		f _O =30Hz			3.3		nV/ √Hz
		f _O =1000Hz			3.2		nV/ √Hz
) i _n	f _O =10Hz			1.7		pA/ √Hz
Input Noise Current Density (Note 3, 4)		f _O =30Hz			1.0		pA/ √Hz
		f _O =1000Hz			0.7		pA/ √Hz
Input Noise Voltage (Note 3, 5)	e _{n p-p}	0.1Hz to 10Hz			0.1		µV р-р


Notes: 1. Input offset voltage measurements are performed ~ 0.5 seconds after application of power.


- 2. Guaranteed by design.
- 3. Sample tested.
- 4. See test circuit for current noise measurement.
- 5. See test circuit and frequency response curve for 0.1Hz to 10Hz tester.


■ TYPICAL CHARACTERISTICS



UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.