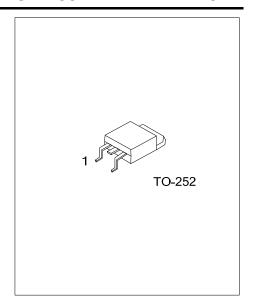
UNISONIC TECHNOLOGIES CO., LTD


UFR1040

FAST RECOVERY EPITAXIAL DIODE

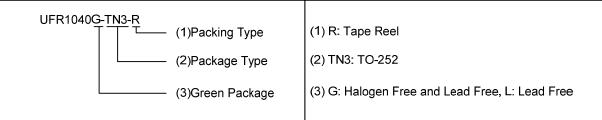
SUPERFAST RECOVERY RECTIFIER

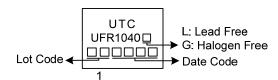
DESCRIPTION

The UTC UFR1040 is a superfast recovery rectifier, it uses UTC's advanced technology to provide customers with low forward voltage drop, low leakage, high current capability and high surge capability etc. These characteristics make it ideal for heavy duty applications that demand long term reliability. also fit into auxiliary functions such as snubber, bootstrap, and demagnetization applications.

FEATURES

- * Ultra-Fast Recovery Time for High Efficiency
- * Low Forward Voltage Drop, High Current Capability and Low Power Loss


SYMBOL


ORDERING INFORMATION

Ordering Number		Destern	Pin Ass	ignment	Da alsinan	
Lead Free	Halogen Free	Package	1	2	Packing	
UFR1040L-TN3-R	UFR1040G-TN3-R	TO-252	K	Α	Tube	

Note: Pin Assignment: A: Anode K: Cathode

MARKING

www.unisonic.com.tw 1 of 3

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified)

Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60Hz.

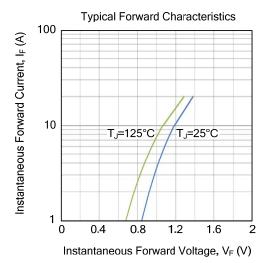
PARAMETER	SYMBOL	RATINGS	UNIT
Repetitive Peak Reverse Voltage	V_{RRM}	400	V
Average forward current, δ = 0.5% T_C =130°C	I _{F(AV)}	10	Α
Surge non repetitive forward current tp=10ms Sinusoidal	I _{FSM}	70	Α
Operating Junction Temperature	T_J	+150	°C
Storage Temperature Range	T _{STG}	-55 ~ + 150	°C

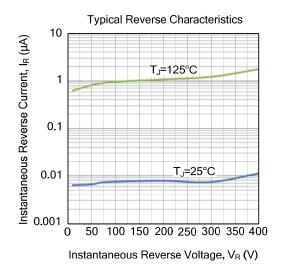
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	θιс	3.1	°C/W

■ ELECTRICAL CHARACTERISTICS


Ratings at 25°C ambient temperature unless otherwise specified. Resistive or inductive load, 60Hz


PARAMETER	SYMBOL	TEST CONDI	TEST CONDITIONS		TYP	MAX	UNIT
Forward voltage drop (Note 1)	V	I _F =10A	T _J =25°C			1.4	٧
	V _F		T _J =125°C			1.3	>
Instantaneous Reverse Current			TJ=25°C			10	μΑ
(Note 2)	I _R	$V_R = V_{RRM}$	T _J =125°C			500	μΑ
Reverse recovery time		$I_F=1.0A, V_R=30V, dI_F/G$ $T_J=25$ °C	dt=-200A/μs,		18.4		ns
	t _{rr}	I_F =5A, V_R =30V, dI_F/dt T_J =25°C	=-200A/μs		26.8		ns
		$I_F=10A, V_R=30V, dI_F/c$ $T_J=25^{\circ}C$	lt=-200Α/μs		31.2		ns

Notes: 1. Pulse test: t_P = 380 ms, δ = 2 %.

- 2. Pulse test: $t_P = 5$ ms, $\delta = 2$ %.
- 3. To evaluate the conduction losses use the following equation: $P=1.4 \times I_{F(AV)} + 0.027 I_F^2$ (RMS).

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.