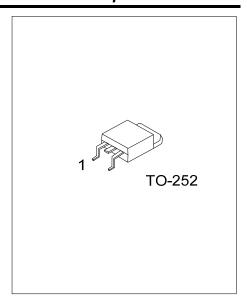
UGV3545

Preliminary

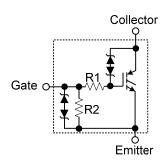
Insulated Gate Bipolar Transistor


200mJ, 450V N-CHANNEL IGNITION IGBT

DESCRIPTION

The UTC **UGV3545** is an N-channel ignition Insulated Gate Bipolar Transistor. It uses UTC's advanced technology to provide customers with outstanding SCIS capability, for

suitable for Coil –On plug applications and Automotive Ignition Coil driver circuits, etc.


UTC **UGV3545** show very low on-state voltage and very high SCIS energy capability over a wide operating temperature range. Moreover, ESD-protected logic level gate input and an integrated gate resistor means no external protection circuitry is required.

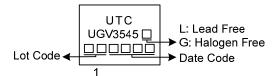
■ FEATURES

- * ESD gate-emitter protection
- * Gate-collector high voltage clamping
- * Logic level gate drive
- * Very low saturation voltage
- * High pulsed current capability
- * Gate and gate-emitter resistor

■ SYMBOL

■ ORDERING INFORMATION

Ordering Number		Doolsons	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
UGV3545L-TN3-R	UGV3545G-TN3-R	TO-252	G	С	E	Tape Reel	


Note: Pin Assignment: G: Gate C: Collector E: Emitter

UGV3545G-TN3-R

(1)Packing Type (1) R: Tape Reel (2) TN3: TO-252 (3) G: Halogen Free and Lead Free, L: Lead Free

<u>www.unisonic.com.tw</u> 1 of 5

■ MARKING

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

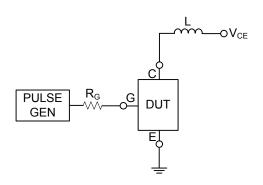
PARAMETER		SYMBOL	RATINGS	UNIT	
Collector to Emitter Breakdown Voltage		BV _{CER}	450	V	
Emitter to Collector Voltage Reverse Battery Condition		BV _{ECS}	30	V	
At Starting	T _J =25°C, I _{SCIS} =11.6A, L=3.0mHy	L	200	mJ	
	T _J = 150°C, I _{SCIS} =8.8A, L=3.0mHy	E _{scis}	116	mJ	
Continuous Collector Current	T _C =25°C		35	Α	
	T _C =110°C	I _C	21	Α	
Gate to Emitter Voltage Continuous		V_{GEM}	±10	V	
Power Dissipation Total at T _C =25°C		0	125	W	
Power Dissipation Derating T _C >25°C		P_{D}	1	W/°C	
Electrostatic Discharge Voltage at 100pF, 1500Ω		ESD	4	kV	
Junction Temperature		T_J	-40 ~ +175	°C	
Storage Temperature Range		T _{STG}	-40 ~ +175	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

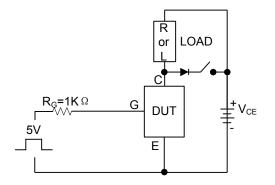
■ THERMAL DATA

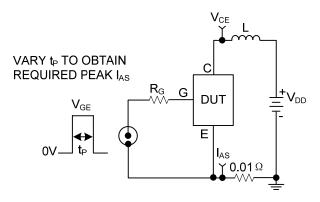
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Case	θ_{JC}	1.0	°C/W

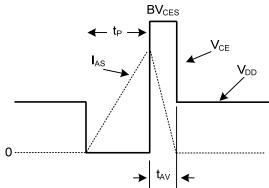
■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Off State Characteristics							
Collector to Emitter Breakdown Voltage	BV _{CER}	I_C =2mA, V_{GE} =0V, R_G =1K Ω , T_J =-40~150°C		400	450	500	V
Collector to Emitter to Breakdown Voltage	BV _{CES}	I _C =10mA, V _{GE} =0V, R _G =0, T _J =-40~150°C		400	450	500	V
Emitter to Collector Breakdown Voltage	BV _{ECS}	I _C =-75mA, V _{GE} =0V, T _C =25°C		30			V
Gate to Emitter Breakdown Voltage	BV _{GES}	I _{GES} =±2mA		±12	±14		V
Collector to Emitter Leakage Current		V _{CER} =350V,	T _C =25°C			25	μA
Collector to Emitter Leakage Current	I _{CER}	R_G =1 $K\Omega$	T _C =150°C			1	mΑ
Emitter to Collector Leakage Current	1	V _{EC} =24V	T _C =25°C			1	mA
Emilier to Collector Leakage Current	I _{ECS}		T _C =150°C			40	mA
Series Gate Resistance	R ₁				70		Ω
Gate to Emitter Resistance	R_2			10		26	ΚΩ
On State Characteristics							
	V _{CE(SAT)}	$I_C=6A$, $V_{GE}=4V$	T _C =25°C		1.0	1.3	V
Collector to Emitter Saturation Voltage		I _C =10A, V _{GE} =4.5V	T _C =150°C		1.2	1.55	V
		I _C =15A, V _{GE} =4.5V	T _C =150°C		1.5	1.9	V
Dynamic Characteristics							
Gate Charge	$Q_{G(ON)}$	I _C =10A, V _{CE} =12V, V _{GE} =5V			14.7		nC
Gate to Emitter Threshold Voltage	$V_{GE(TH)}$	I _C =1.0mA, V _{CE} =V _{GE}		1.3		2.2	V
Gate to Emitter Plateau Voltage	V_{GEP}	I _C =10A, V _{CE} =12V			2.6		V
Switching Characteristics							
Current Turn-On Delay Time-Resistive	t _{d(ON)R}	V _{CE} =300V, V _{GE} =10V, I _C =10A,			16		ns
Current Rise Time-Resistive	t_{rR}				17		ns
Current Turn-Off Delay Time-Inductive	$t_{d(OFF)L}$ L=500 μ H, R _G =10 Ω				0.97		μs
Current Fall Time Inductive	t _{fL}				4.26		μs
Self Clamped Inductive Switching	SCIS	T_J = 25°C, L=3.0mHy, R_G =1K Ω , V_{GE} =5V				200	mJ

Notes: 1. Pulse Test: Pulse width ≤ 300µs, Duty cycle ≤ 2%.


2. Essentially independent of operating temperature.


■ TEST CIRCUIT AND WAVEFORMS


Inductive Switching Test Circuit

 $t_{\mbox{\tiny ON}}$ and $t_{\mbox{\tiny OFF}}$ Switching Test Circuit

Energy Test Circuit

Energy Waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.