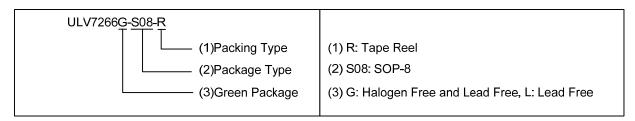

ULV7266 CMOS IC

ULTRA LOW POWER CMOS OPERATIONAL AMPLIFIERS

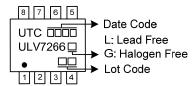
DESCRIPTION

The UTC ULV7266 is ultra low supply current, rail-to-rail input and output CMOS operational amplifiers.

The UTC **ULV7266** have an wide operating temperature range. They have a wide input common mode voltage range and output voltage swing, and take the minimum operating supply voltage down to 1.8V. The maximum recommended supply voltage is 5.5V. These features are suitable for portable equipment and sensor amplifiers.

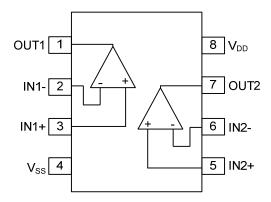


FEATURES


- * Low Operating Supply Voltage: 1.8V(MIN)
- * Ultra Low Supply Current:0.9µA (Typ.)

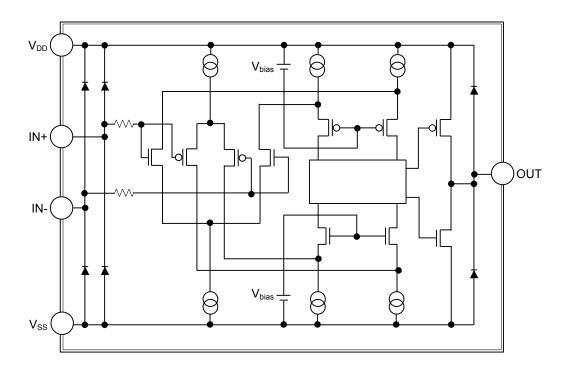
ORDERING INFORMATION

Ordering	Number	Dookona	Packing	
Lead Free	Halogen Free	Package		
ULV7266L-S08-R	ULV7266G-S08-R	SOP-8	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 5

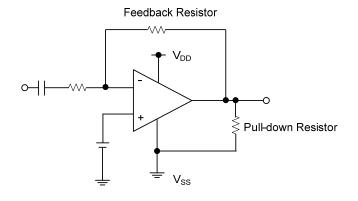

■ PIN CONFIGURATION

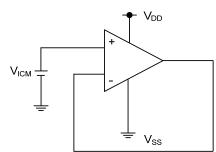
■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	OUT1	Output (op amp1)		
2	IN1-	Inverting Input (op amp1)		
3	IN1+	Non-inverting Input (op amp1)		
4	V _{SS}	Negative Power Supply		
5	IN2+	Non-inverting Input (op amp2)		
6	IN2-	Inverting Input (op amp2)		
7	OUT2	Output (op amp2)		
8	V_{DD}	Positive Power Supply		

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

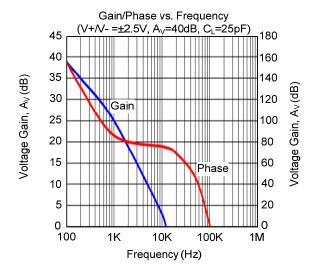

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{DD} - V_{SS}	+7	V
Differential Input Voltage	V_{ID}	V_{DD} - V_{SS}	V
Input Common-mode Voltage Range	V_{ICM}	$(V_{SS}-0.3)$ to $V_{DD}+0.3$	V
Input Current	I	±10	mA
Operating Supply Voltage	V_{OPR}	+1.8 ~ +5.5	V
Power Dissipation	P_{D}	0.55	W
Junction Temperature	T_J	+125	°C
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ +125	°C

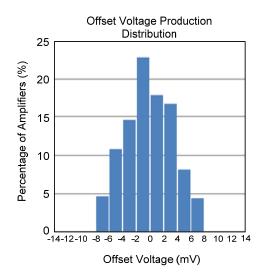

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ **ELECTRICAL CHARACTERISTICS** (V_{DD}=+3V, V_{SS}=0V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
Quiescent Current	lα	R _L =∞, All Op-Amps	25°C		0.9	1.7	
		AV=0dB, IN+=1.5V	-40°C~+85°C		2.1		μA
Power Supply Rejection Ratio	PSRR			60	85		dB
Input Offset Voltage	Vos	V _{DD} =1.8V~5.5V				8.5	mV
Input Bias Current	lΒ				5		pΑ
Input Offset Current	los				5		pΑ
Common-Mode Voltage Range	V_{CM}	V_{SS} to V_{DD}		0		3	V
Common-mode Rejection Ratio	CMRR			45	65		dB
Large Signal Voltage Gain	A_V	R _L =10kΩ		60	90		dB
Output Voltage High	V_{OH}	$R_L=10k\Omega$		V _{DD} -0.1			V
Output Voltage Low	V_{OL}	$R_L=10k\Omega$				V _{SS} +0.1	V
Output Source Current	I _{SOURCE}	OUT=V _{DD} -0.4V		1	2.2		mΑ
Output Sink Current	I _{SINK}	OUT=V _{SS} +0.4V		1	3.2		mΑ
Slew Rate	SR	C _L =25pF			3.5		V/ms
Gain-Bandwidth Product	GBW	C _L =25pF, A _V =40dB			12		kHz
Phase Margin	θ	C_L =25pF, A_V =40dB			60		deg
Channel Separation	CS	A _V =40dB, OUT=1Vrms			80		dB

■ TYPICAL APPLICATION CIRCUIT





To Suppress the Crosover Distortion

Example of Application Circuit for Unused Op-amp

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.