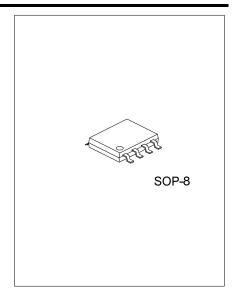


UNISONIC TECHNOLOGIES CO., LTD

ULV6042 Preliminary CMOS IC

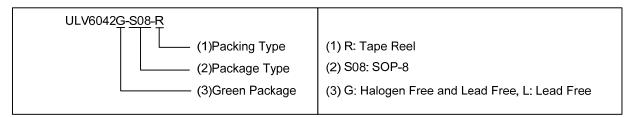

MICRO-POWER, RAIL-TO-RAIL INPUT/OUTPUT OPERATIONAL AMPLIFIERS

DESCRIPTION

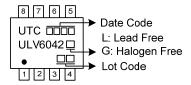
The UTC ULV6042 operational amplifier is offered dual configurations.

The UTC ULV6042 of operational amplifiers (op amps) with a single supply voltage as low as 1.4V, while drawing less than 1.2µA (maximum) of quiescent current per amplifier. This device is also designed to support rail-to-rail input and output operation. This combination of features supports battery-powered and portable applications.

The UTC ULV6042 amplifier has a gain-bandwidth product of 14 kHz (typical) and is unity gain stable. This specification makes these op amps appropriate for low frequency applications, such as battery current monitoring and sensor conditioning.

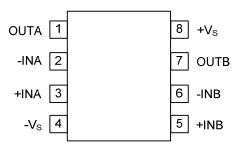


FEATURES


- * Wide Supply Voltage Range: 1.4V ~ 6.0V
- * Low Quiescent Current: 900nA/amplifier (typical)
- * Rail-to-Rail Input/Output
- * Gain Bandwidth Product: 14kHz (typical)
- * Unity Gain Stable
- * Available in Dual

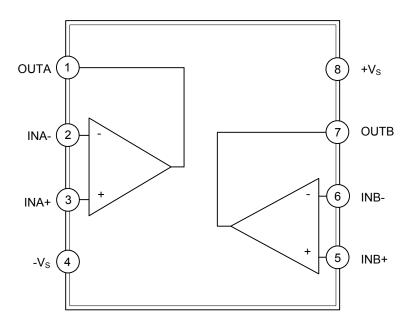
ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	- Package		
ULV6042L-S08-R	ULV6042G-S08-R	SOP-8	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 6 QW-R105-110.a


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	OUTA	Output pin of A AMP
2	-INA	Invert input pin of A AMP
3	+INA	Non-invert input of A AMP
4	-Vs	Negative power supply
5	+INB	Non-invert input of B AMP
6	-INB	Invert input pin of B AMP
7	OUTB	Output pin of B AMP
8	+V _S	Positive power supply

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
V _{DD} -V _{SS}		7.0	V
Current at Input Pins		±2	mA
Analog Inputs (V _{IN} +, V _{IN} -)		$-V_S - 1.0 \sim +V_S + 1.0$	V
All Other Inputs and Outputs		-V _S - 0.3 ~ +V _S +0.3	
Difference Input Voltage		+V _S - (- V _{S)}	
Output Short Circuit Current		continuous	
Current at Output and Supply Pins		±30	mA
Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

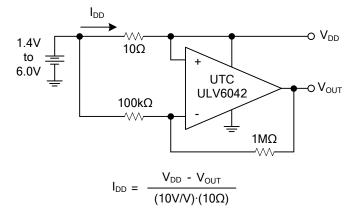
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ TEMPERATURE CHARACTERISTICS

(Unless otherwise indicated, V_{DD} =1.4V ~ 5.5V, V_{SS} =GND)

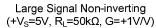
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Temperature Ranges						
Operating Temperature Range	T_A		-40		+85	°C
Storage Temperature Range	T _A		-65		+150	°C

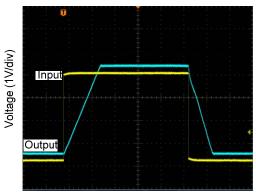
■ THERMAL DATA

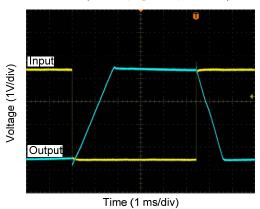

PARAMETER	SYMBOL	RATING	UNIT
Thermal Resistance	θ_{JA}	158	°C/W

■ DC ELECTRICAL CHARACTERISTICS

Unless otherwise indicated, $+V_S = +1.4V \sim +5.5V$, $-V_S = GND$, $T_A = 25^{\circ}C$, $V_{CM} = +V_S/2$, $V_{OUT} \approx +V_S/2$, and $R_L = 1M\Omega$


Offices officiwise indicated, +v	S - + 1.4 V ~	7 + 5.5 v, - v _S - GND, TA - 25 C, v _{CM} -	-+ V S/Z, V OU	T~+VS/Z,	and N _L	- 11VIS2
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply						
Quiescent Current per Amplifier	ΙQ	$I_{O} = 0$	0.1	0.9	1.2	μΑ
Power Supply Rejection	PSRR	$V_{CM} = -V_{S}$	70	90		dB
Supply Voltage	+V _S	(Note 1)	1.4		6.0	V
Input Characteristics						
Input Offset Voltage	Vos	$V_{CM} = +V_S/2$	-4		+4	mV
Input Bias Current	I _B			20		pА
Input Offset Current	Ios			10		pА
Common-Mode Input Range	V_{CM}		-V _S -0.3		+V _S +0.3	V
		$+V_S = 5V$, $V_{CM} = -0.3V \sim 5.3V$	62	80		dB
Common Mode Rejection Ratio	CMRR	$+V_S = 5V$, $V_{CM} = 2.5V \sim 5.3V$	60	75		dB
		$+V_S = 5V$, $V_{CM} = -0.3V \sim 2.5V$	60	80		dB
Open-Loop Voltage Gain	A _V	$R_L = 50k\Omega$ $V_{OUT} = 0.1V \sim +V_S - 0.1V$	80	95		dB
Common Mode Input Impedance	Z _{CM}	301		10 ¹³ 6		Ω pF
Differential Input Impedance	Z_{DIFF}			10 ¹³ 6		Ω pF
Output Characteristics	•		•		•	
Maximum Output Voltage Swing	V _{OL} , V _{OH}	$R_L = 50k\Omega$	V _{SS} +10		V _{DD} -10	mV
0.10.101.01000.010	I _{SC}	V _{DD} = 1.4V		1.5		mA
Output Short Circuit Current		V _{DD} = 5.5V		15		mA
Dynamic Performance (C _L =60)	pF)			_		
Slew Rate	SR			3.0		V/ms
Gain Bandwidth Product	GBW			14		kHz
Phase Margin	PM	G = +1V/V		65		0
Noise						
Input Voltage Noise	E _{ni}	f = 0.1Hz ~ 10Hz		5.5		μV_{P-P}
Input Voltage Noise Density	e _{ni}	f = 1kHz		180		nV √Hz
Input Current Noise Density	İ _{ni}	f = 1kHz		1		fA √Hz


■ TYPICAL APPLICATION CIRCUIT


High Side Battery Current Sensor

■ TYPICAL CHARACTERISTICS

Large Signal Inverting Pulse (+V_S=5V, R_L=50kΩ, G=-1V/V)

Time (1 ms/div)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.