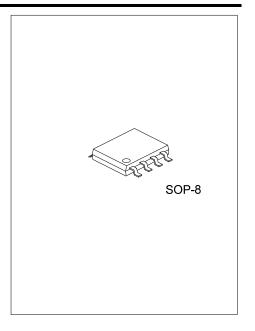


ULV8532 Preliminary CMOS IC


500kHz, 25µA, RAIL-TO-RAIL INPUT/OUTPUT, CMOS OPERATIONAL AMPLIFIER

■ DESCRIPTION

The UTC **ULV8532** (dual) is low cost, voltage feedback amplifier. The device can operate from 2.1V to 5.5V single supply, while consuming only 25µA quiescent current per amplifier. It provides rail-to-rail input with a wide input common mode voltage range and rail-to-rail output voltage swing. This feature makes UTC **ULV8532** appropriate for buffering ASIC.

The UTC **ULV8532** offers a gain-bandwidth product of 500kHz. It's well suited for piezoelectric sensors, integrators and photodiode amplifiers.

The UTC **ULV8532** is designed into a wide range of applications, such as battery-powered instrumentation, safety monitoring, portable systems, and transducer interface circuits in low power systems.

■ FEATURES

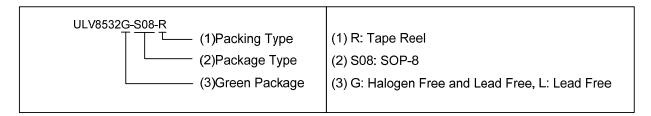
* Supply Voltage Range: 2.1V ~ 5.5V

* Low Cost

* Input Offset Voltage: 1.0mV (TYP)

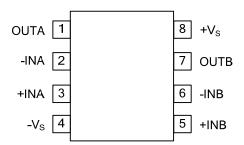
* Unity-Gain Stable

* Gain-Bandwidth Product: 500kHz


* Rail-to-Rail Input and Output

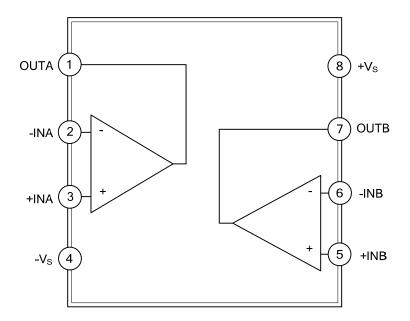
* Input Voltage Range: $-0.1V \sim 5.6V$ with $V_S = 5.5V$

* Low Supply Current: 25µA/Amplifier


■ ORDERING INFORMATION

Ordering	Number	Package	Dealine	
Lead Free	Lead Free Halogen Free		Packing	
ULV8532L-S08-R	ULV8532G-S08-R	SOP-8	Tape Reel	

<u>www.unisonic.com.tw</u> 1 of 5


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION			
1	OUTA	Output pin of A AMP			
2	-INA	Invert input pin of A AMP			
3	+INA	Non-invert input of A AMP			
4	-Vs	Negative power supply			
5	+INB	Non-invert input of B AMP			
6	-INB	Invert input pin of B AMP			
7	OUTB	Output pin of B AMP			
8	+V _S	Positive power supply			

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	+V _S to -V _S	6	V
Input Common Mode Voltage Range	V_{ICM}	$(-V_S) - 0.3 \sim (+V_S) + 0.3$	V
Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Input terminals are diode-clamped to the power-supply rails. Input signals that can swing more than 0.3V beyond the supply rails must be current-limited to 10mA or less.
- 3. Short-circuit to ground.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Operating Temperature Range	T _A	-40 ~ +125	°C

■ THERMAL DATA (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Junction-to-Ambient Thermal Resistance	θ_{JA}	158	°C/W

■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_S=5V, R_L=200k\Omega$ connected to $V_S/2$ and $V_{OUT}=V_S/2$, unless otherwise specified)

$(I_A=25^{\circ}C, V_S=5V, R_L=200K\Omega$ col	nnected to	$V_S/2$ and $V_{OUT} = V_S/2$, unless otherwise	specifie	ea)		
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Characteristics						
Input Offact Voltage	Vos	$V_{CM} = V_S/2$		1.0	5.5	mV
Input Offset Voltage		V _{CM} = V _S /2, T _A = -40°C~125°C			7.4	mV
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta T$			2.0		μV/°C
Input Bias Current	I _B			1		pА
Input Offset Current	Ios			1		pА
Input Common Mode Voltage Range	V _{CM}	V _S = 5.5V		-0.1~ 5.6		V
		$V_S = 5.5V$, $V_{CM} = -0.1V \sim 4V$	71	92		dB
Common Mada Daiastian Datia	01400	T _A = -40°C~125°C	68			dB
Common Mode Rejection Ratio	CMRR	$V_S = 5.5V$, $V_{CM} = -0.1V \sim 5.6V$	60	78		dB
		T _A = -40°C~125°C	57			dB
		$R_L = 5k\Omega$, $V_{OUT} = 0.1V \sim 4.9V$	72	88		dB
Onen Leen Veltere Cein		T _A = -40°C~125°C	68			dB
Open-Loop Voltage Gain	A _V	$R_L = 100k\Omega$, $V_{OUT} = 0.035V \sim 4.965V$	82	92		dB
		T _A = -40°C~125°C	78			dB
Power Supply			_			_
				25	53	μΑ
Quiescent Current/Amplifier	IQ	T _A = -40°C~125°C			59	μΑ
Danier Committee Daties Daties	DODD	$V_S = 2.5V \sim 5.5V, V_{CM} = 0.5V$	70	90		dB
Power Supply Rejection Ratio	PSRR	T _A = -40°C~125°C	66			dB
On anotic a Maltana Bana			2.1		5.5	V
Operating Voltage Range		T _A = -40°C~125°C	2.5		5.5	V
Output Characteristics						
	V _{OH}	$R_L = 100k\Omega$	4.980	4.997		V
		T _A = -40°C~125°C	4.970			V
		$R_L = 100k\Omega$		3	20	mV
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	V_{OL}	T _A = -40°C~125°C			30	mV
Output Voltage Swing	.,,	$R_L = 10k\Omega$	4.970	4.994		V
	V _{OH}	T _A = -40°C~125°C	4.960			V
	V _{OL}	$R_L = 10k\Omega$		6	30	mV
		T _A = -40°C~125°C			40	mV
Output Current	I _{SOURCE}	$R_L = 10\Omega$ to $V_S/2$	60	85		mA
		T _A = -40°C~125°C	45			mA
		$R_L = 10\Omega$ to $V_S/2$	60	72		mA
	I _{SINK}	T _A = -40°C~125°C	45			mA
Dynamic Performance (C _L = 10	0pF)	•	•			•
Slew Rate	SR	G = +1, 2V Output Step		0.2		V/µs
Gain-Bandwidth Product	GBW			500		kHz
Settling Time to 0.1%	ts	G = +1, 2V Output Step		19		μs
Overload Recovery Time		$V_{IN} \cdot G = V_S$		18		μs
Noise Performance	•		•			
	en	f = 1kHz		35		nV √Hz
Input Voltage Noise Density		f = 10kHz		25		nV √Hz

TYPICAL APPLICATION CIRCUIT

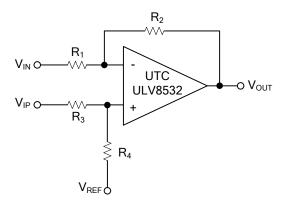


Figure 1: Differential Amplifier

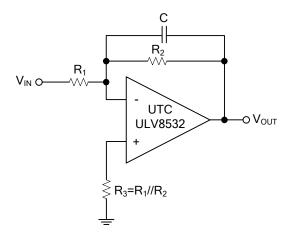


Figure 2: Active Low-Pass Filter

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.