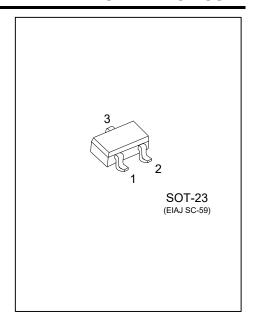
**UHS351** 

**Preliminary** 


# LINEAR INTEGRATED CIRCUIT

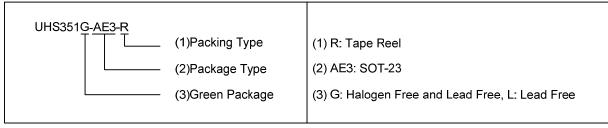
# OMNIPOLAR HALL-EFFECT DIGITAL POSITION SENSOR

#### DESCRIPTION

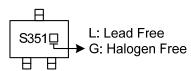
The UTC **UHS351** sensor is small, multipurpose digital Hall-effect device which is operated by the magnetic field from a permanent magnet or an electromagnet. It is designed to respond to either a North pole or a South pole.

This omnipolar sensor designed to meet a extensive range of possible applications is flexible and sensitive device. The UTC **UHS351** has a typical operating point of 85 G at 25 °C. Because of being operated by a North pole or a South pole, They do not require the magnet polarity to be identified, which makes the installation easier and potentially reduces the system cost.




#### **■ FEATURES**

- \* Simple activation from a North pole or a South pole and sensitive magnetics makes this omnipolar product suitable in all kinds of lid closure detection, potential motion control, and displacement sensing applications
- \* Built-in reverse polarity protection prevents the device from potential damage during installation
- \* Low voltage 3V ability helps reduce power consumption
- \* Thermally balanced integrated circuit provides for stable operation over a wide temperature range of -40°  $\sim$  150 °C

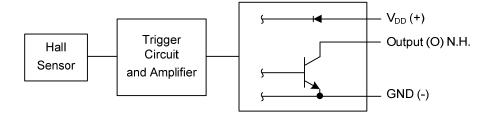

#### ■ ORDERING INFORMATION

| Ordering Number |               | Dealtern | Pin Assignment |   |   | Dealdean  |  |
|-----------------|---------------|----------|----------------|---|---|-----------|--|
| Lead Free       | Halogen Free  | Package  | 1              | 2 | 3 | Packing   |  |
| UHS351L-AE3-R   | UHS351G-AE3-R | SOT-23   | ı              | 0 | G | Tape Reel |  |

Note: Pin Assignment: I: VDD O: Output G: GND



## MARKING




<u>www.unisonic.com.tw</u> 1 of 5

# ■ PIN DESCRIPTION

| PIN NO. | PIN NAME | DESCRIPTION    |
|---------|----------|----------------|
| 1       | $V_{DD}$ | Supply voltage |
| 2       | Output   | Output voltage |
| 3       | GND      | Ground         |

# ■ BLOCK DIAGRAM



# ABSOLUTE MAXIMUM RATING

| PARAMETER              | SYMBOL           | RATINGS    | UNIT  |
|------------------------|------------------|------------|-------|
| Supply Voltage         | $V_{DD}$         | -28 ~ 28   | V     |
| Applied Output Voltage | $V_{OUT}$        | -0.5 ~ 28  | V     |
| Output Current         | I <sub>OUT</sub> | 20         | mA    |
| Magnetic Flux          |                  | No limit   | gauss |
| Operating temperature  | $T_OPR$          | -40 ~ +150 | °C    |
| Storage temperature    | $T_{STG}$        | -40 ~ +150 | °C    |

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

# ■ ELECTRICAL CHARACTERISTICS (V<sub>DD</sub>=3.0V to 24V, 20mA load, T<sub>A</sub>=-40°C~150°C)

| PARAMETER                                |      | SYMBOL            | TEST CONDITIONS                                                                                             | MIN | TYP | MAX | UNIT |
|------------------------------------------|------|-------------------|-------------------------------------------------------------------------------------------------------------|-----|-----|-----|------|
| Supply Voltage                           |      | 1/                | -40°C~125°C                                                                                                 | 3   |     | 24  | V    |
|                                          |      | $V_{DD}$          | 150°C                                                                                                       | 3   |     | 12  | V    |
| Supply Current                           |      | Is                | V <sub>DD</sub> =5V at 25°C                                                                                 |     | 3.5 | 6   | mA   |
|                                          |      |                   | V <sub>DD</sub> =3V at 25°C                                                                                 |     | 3   | 5   | mA   |
|                                          |      |                   |                                                                                                             |     |     | 9   | mA   |
| Output Current                           |      | l <sub>out</sub>  |                                                                                                             |     |     | 20  | mA   |
| VSAT                                     |      | $V_{SAT}$         | at 20mA, gauss>Bop positive or gauss <bop negative<="" td=""><td></td><td></td><td>0.4</td><td>V</td></bop> |     |     | 0.4 | V    |
| Output Leakage Current I <sub>LEAK</sub> |      | I <sub>LEAK</sub> | gauss <bop- or="">Bop+</bop->                                                                               |     |     | 10  | μA   |
| Output Switching Time                    | Rise | t <sub>r</sub>    | V <sub>DD</sub> =12V at 25°C                                                                                |     |     | 1.5 | μS   |
|                                          | Fall | t <sub>f</sub>    | R <sub>L</sub> =1.6KΩ, C <sub>L</sub> =20pF                                                                 |     |     | 1.5 | μS   |

# ■ MAGNETIC SPECIFICATIONS (V<sub>DD</sub>=3.0V to 24V, T<sub>A</sub>=25°C)

| PARAMETER        | SYMBOL            | TEST CONDITIONS | MIN  | TYP | MAX | UNIT |
|------------------|-------------------|-----------------|------|-----|-----|------|
| Operate Positive | B <sub>OP+</sub>  |                 | 35   | 85  | 135 | G    |
| Operate Negative | B <sub>OP</sub> - |                 | -135 | -85 | -35 | G    |
| Release Positive | $B_RP^+$          |                 | 10   | 50  | 120 | G    |
| Release Negative | $B_{RP}$          |                 | -120 | -50 | -10 | G    |
| Differential     |                   |                 | 5    | 35  | 80  | G    |

# **■ PACKAGE INFORMATION**

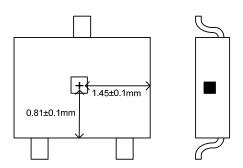
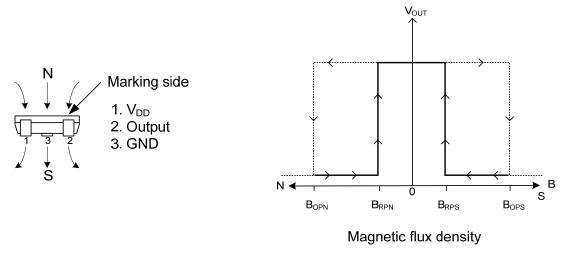
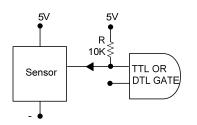
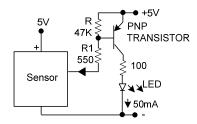
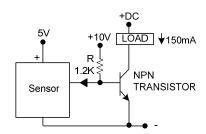
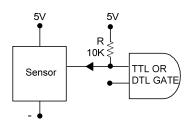
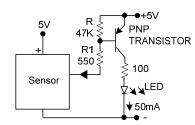
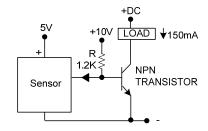



Fig. 1 Sensor Locations



Fig. 2 Applying Direction of Magnetic Flux


### **■ TYPICAL APPLICATION CIRCUIT**














UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.