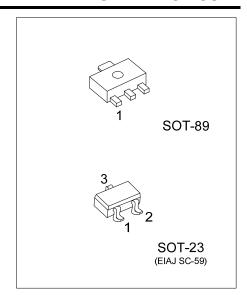
UNISONIC TECHNOLOGIES CO., LTD

U349

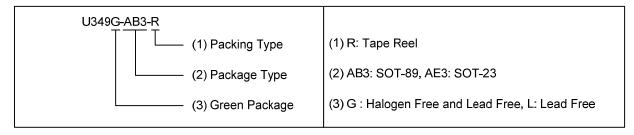

Preliminary

LINEAR INTEGRATED CIRCUIT

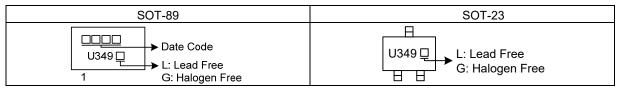
SENSITIVE HALL-EFFECT SWITCHES FOR HIGH-TEMPERATURE OPERATION

DESCRIPTION

UTC **U349** is a semiconductor integrated circuit utilizing the Hall effect. It has been so designed as to operate in the alternating magnetic field especially at low supply voltage and operation over extended temperature ranges to +85°C.This Hall IC is suitable for application to various kinds of sensors, contact-less switches, and the like.

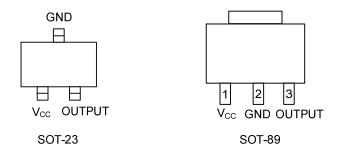


■ FEATURES


- * Wide temperature operation range of -40°C ~ +85°C
- * Wide supply voltage range of 4.5V to 24V
- * TTL and MOS IC are directly drivable by the output
- * Reverse Battery Protection
- * Activate with Small, Commercially Available Permanent Magnets
- * Solid-State Reliability
- * Resistant to Physical Stress

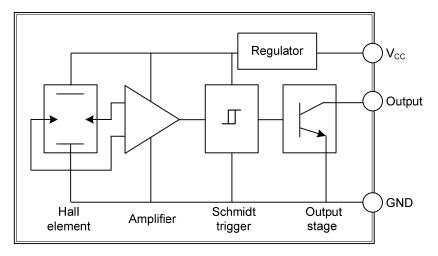
■ ORDERING INFORMATION

Ordering	Number	Dealtana	Dooking	
Lead Free	Halogen Free	Package	Packing	
U349L-AB3-R	U349G-AB3-R	SOT-89	Tape Reel	
U349L-AE3-R	U349G-AE3-R	SOT-23	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 4


PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.		DININIAME	DESCRIPTION					
	SOT-23	SOT-89	PIN NAME	N NAME DESCRIPTION				
	1	1	Vcc	Power supply				
	2	3	OUTPUT	Output pin				
	3	2	GND	Ground pin				

BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

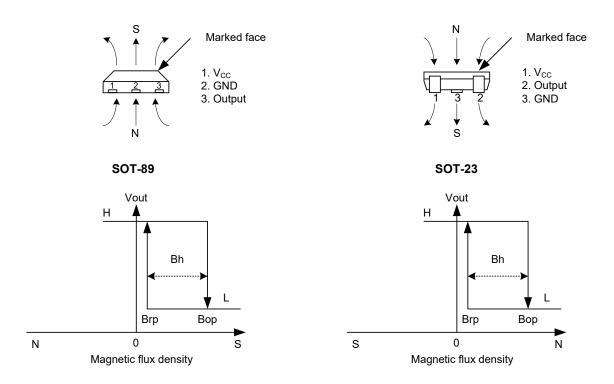
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{cc}	28	V
Reverse Battery Voltage	V_{RCC}	-28	V
Magnetic Flux Density	В	Unlimited	
Output OFF Voltage	V _{out}	28	V
Reverse Output Voltage	V _{out}	-0.5	V
Continuous Output Current	I _{OUT}	25	mA
Operating Temperature Range	T _A	-40 ~ +85	°C
Storage Temperature Range,	T _{STG}	-65 ~ + 170	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

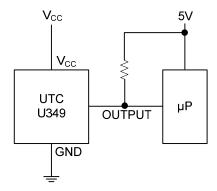
■ ELECTRICAL RESISTANCES CHARACTERISTICS (V_{CC}=8V over operating temperature range)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc	Operating	4.5		24	V
Output Saturation Voltage	V _{OUT(SAT)}	I _{OUT} =20mA, B>BOP		175	400	mV
Output Leakage Current	I _{OFF}	V _{OUT} =24V, B <brp< td=""><td></td><td><1.0</td><td>10</td><td>μΑ</td></brp<>		<1.0	10	μΑ
Supply Current	Icc	B <brp(output off)<="" td=""><td></td><td>4.4</td><td>9.0</td><td>mA</td></brp(output>		4.4	9.0	mA
Output Rise Time	t _r	$R_L=820\Omega$, $C_L=20pF$		0.04	2.0	μs
Output Fall Time	t _f	$R_L = 820\Omega$, $C_L = 20pF$		0.18	2.0	μs

■ MAGNETIC CHARACTERISTICS IN GAUSS OVER OPERATING SUPPLY VOLTAGE RANGE


(T_A = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Operate Point	B _{OP}		240	350	460	Gauss
Release Point	B _{RP}		135	250	370	Gauss
Hysteresis	B _{hys}			100		Gauss


Notes: 1. Typical values are at T_A =+25°C and V_{CC} =8V

2. B_{OP}=operate point (output turns ON); B_{RP}=release point (output turns OFF); B_{hys}=hysteresis (B_{OP}-B_{RP})

■ PACKAGE INFORMATION

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.