

UNISONIC TECHNOLOGIES CO., LTD

2N7001

Preliminary

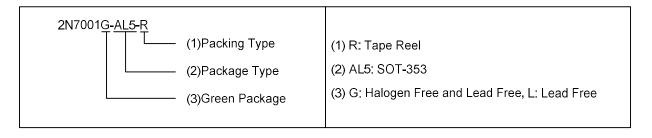
CMOS IC

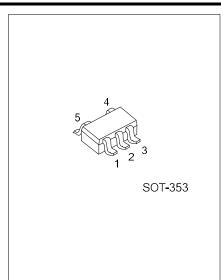
SINGLE-BIT DUAL-SUPPLY BUFFERED VOLTAGE SIGNAL CONVERTER

DESCRIPTION

The UTC **2N7001** is a single-bit buffered voltage signal converter that uses two separate configurable powersupply rails to up or down translate a unidirectional signal. The device is operational with both V_{CCA} and V_{CCB} supplies down to 1.65 V and up to 3.60 V. V_{CCA} defines the input threshold voltage on the A input. V_{CCB} defines the output drive voltage on the B output.

This device is fully specified for partial-power-down applications using the I_{off} current. The I_{off} protection circuitry ensures that no excessive current is drawn from or to an input, output, or combined I/O that is biased to a specific voltage while the device is powered down.

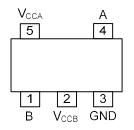

The V_{CC} isolation feature ensures that if either V_{CCA} or V_{CCB} is less than 100 mV, the output port (B) enters a high-impedance state.


FEATURES

- * Up and down translation across 1.65V to 3.6V
- * Maximum quiescent current (I_{CCA} + I_{CCB}) of 14µA
- (125°C maximum)
- * V_{CC} isolation feature
- If either V_{CC} input is below 100 mV, the output becomes high-impedance
- * IOFF supports partial-power-down mode operation

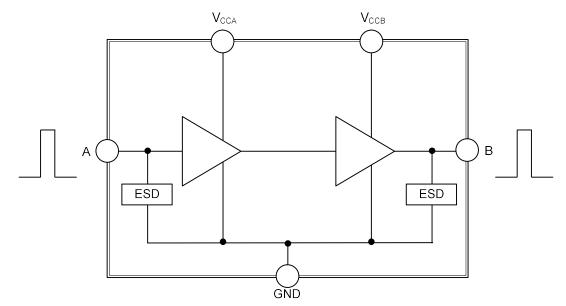
ORDERING INFORMATION

Ordering	Ordering Number Deckage			
Lead Free	Halogen Free	Package	Packing	
2N7001L-AL5-R	2N7001G-AL5-R	SOT-353	Tape Reel	



MARKING

PIN CONFIGURATION


PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	В	Data Output. This pin is referenced to V _{CCB}
2	V _{CCB}	Output Supply voltage. $1.65V \le V_{CCB} \le 3.6V$
3	GND	Ground
4	А	Data Input. This pin is referenced to V _{CCA}
5	V _{CCA}	Input Supply voltage. $1.65V \le V_{CCA} \le 3.6V$

FUNCTION TABLE

INPUT	OUTPUT
L (Referenced to V _{CCA})	L (Referenced to V _{CCB})
H (Referenced to V _{CCA})	H (Referenced to V _{CCB})

BLOCK DIAGRAM

PARAMETER	8	SYMBOL	RATINGS	UNIT
Supply Voltage, A Port		V _{CCA}	-0.5 ~ 4.2	V
Supply Voltage, B Port		V _{CCB}	-0.5 ~ 4.2	V
Input Voltage (Note2)		V _I	-0.5 ~ 4.2	l v
Voltage Applied to the Output High-Impedance or Power-Off		Vo	-0.5 ~ 4.2	V
Voltage Applied to the Output Low State (Note 2, 3)	in the High or	Vo	-0.5 ~ V _{CCB} +0.2	V
Input Clamp Current	V _I <0		-50	mA
Output Clamp Current	V ₀ <0		-50	mA
Continuous Output Current		lo	-50 ~ 50	mA
Continuous Current Through \	/ _{CCB} or GND	lo	-50 ~ 50	mA
Continuous Current Through \	/ _{CCA}	lo	-10 ~ 10	mA
Operating Junction Temperatu	Ire	TJ	-40 ~ +150	°C
Storage Temperature		T _{STG}	-65 ~ +160	°C

ABSOLUTE MAXIMUM RATING [over operating free-air temperature range (unless otherwise noted)]

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.
- 3. The output positive-voltage rating may be exceeded up to 4.2 V maximum if the output current ratings are observed

RECOMMENDED OPERATING CONDITIONS

[over operating free-air temperature range (unless otherwise noted)]

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage, V _{CCA}	V _{CCA}		1.65		3.6	V
Supply Voltage, V _{CCB}	V _{CCB}		1.65		3.6	V
Input Voltage	VI		0		3.6	V
	N/	Active state	0		V _{CCB}	V
Output Voltage	Vo	Tri-sate	0		3.6	V
Input Transition Rise or Fall Rate	Δt/Δv				100	ns/V
Operating Free-Air Temperature	T _A		-40		+125	°C

THERMAL DATA

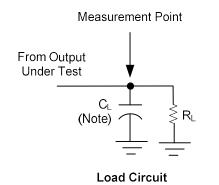
PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	350	°C/W

■ ELECTRICAL CHARACTERISTICS (T_A=-40~+125°C, unless otherwise specified)

	r	T				-	r
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP (Note 1)	MAX	UNIT
		V _{CCA} = 1.65 V - 1.95 V		V _{CCA} ×0.65			V
High-Level Input Voltage	V _{IH}	$V_{CCA} = 2.30 V - 2$	2.70 V	1.60			V
		V _{CCA} = 3.00 V – 3	3.60 V	2.00			V
		V _{CCA} = 1.65 V - 1	.95 V			V _{CCA} ×0.35	V
Low-Level Input Voltage	V _{IL}	$V_{CCA} = 2.30 V - 2$	2.70 V			0.70	V
		$V_{CCA} = 3.00 V - 3$	3.60 V			0.80	V
		V _{CCA} =1.65V~3.6 ^v І _{он} =–100µА	V, V _{CCB} =1.65V~3.6V,	V _{ССВ} -0. 1			V
High-Level Output Voltage	V _{OH}	V _{CCA} =1.65V, V _{CC}	_в =1.65V, I _{он} =–8mA	1.2			V
-		V _{CCA} =2.3V, V _{CCB}	=2.3V,I _{он} =–9mA	1.75			V
		V _{CCA} =3V, V _{CCB} =3	SV,I _{он} =–12mA	2.3			V
	V _{OL}	V _{CCA} =1.65V~3.6V, V _{CCB} =1.65V~3.6V, I _{OH} =100µА				0.1	V
Low-Level Output Voltage		V _{CCA} =1.65V, V _{CC}	V _{CCA} =1.65V, V _{CCB} =1.65V, I _{OH} =8mA			0.45	V
		V _{CCA} =2.3V, V _{CCB} =2.3V,I _{OH} =9mA				0.55	V
		V _{CCA} =3V, V _{CCB} =3V,I _{OH} =12mA				0.7	V
		V _{CCA} =0V, V _{CCB} =0V~3.6V, V _I or V _O =0V-3.6V		-8		8	μA
Partial Power Down Current	l _{off}	V _{CCA} =0V~3.6V, \ V _I or V _O =0V-3.6\	,	-8		8	μA
			V _{CCA} =1.65V~3.6V V _{CCB} =1.65V~3.6V			8	μA
V _{CCA} Supply Current	I _{CCA}	V _I =V _{CCA} or GND I _O =0mA	V _{CCA} =0V V _{CCB} =0V~3.6V	-8			μA
			V _{CCA} =0V~3.6V V _{CCB} =0V			8	μA
V _{CCB} Supply Current		VI=VCCI or GND	V _{CCA} =1.65V~3.6V V _{CCB} =1.65V~3.6V			8	μA
	І _{ССВ}		V _{CCA} =0V V _{CCB} =0V~3.6V			8	μA
			V _{CCA} =0V~3.6V V _{CCB} =0V	-8			μA
Combined Supply Current	I _{CCA +} I _{CCB}	V _{CCA} =1.65V~3.6 ^V V _I =V _{CCI} or GND,	V, V _{CCB} =1.65V~3.6V, I₀=0mA			14	μA

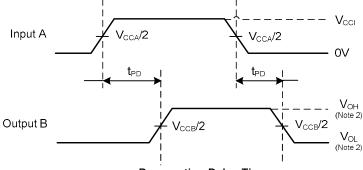
Note: All typical values are for $T_A = 25^{\circ}C$.

■ SWITCHING CHARACTERISTICS (T_A=-40~+125°C, unless otherwise specified)


PARAMETER	SYMBOL	TEST CO	TEST CONDITIONS		TYP	MAX	UNIT
			V _{CCB} =1.80±0.15V	0.5		20	ns
		V _{CCA} =1.80±0.15V	V _{CCB} =2.50±0.20V	0.5		17	ns
			V _{CCB} =3.30±0.30V	0.5		14	ns
Propagation Delay t _{pd}		t _{pd} V _{CCA} =2.50±0.20V	V _{CCB} =1.80±0.15V	0.5		18	ns
	t _{pd}		V _{CCB} =2.50±0.20V	0.5		15	ns
			V _{CCB} =3.30±0.30V	0.5		12	ns
		V _{CCB} =1.80±0.15V	0.5		16	ns	
		V _{CCA} =3.30±0.30V	V _{CCB} =2.50±0.20V	0.5		13	ns
	1		V _{CCB} =3.30±0.30V	0.5		10	ns

■ **OPERATING CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST C	ONDITIONS	MIN	TYP	MAX	UNIT
Input Capacitance	Cı	V _{CCA} =3.3V, V _{CCB} =0V V _I =1.65V _{DC} +1MHz-16dBmsinewave			2		pF
Output Capacitance	Co	V _{CCA} =0V, V _{CCB} =3.3V V _I =1.65V _{DC} +1MHz-16dBmsinewave			4		pF
Denne Die ein etien			V _{CCA} =V _{CCB} =1.8V		1		pF
Power Dissipation	C _{PDA}	I _O =0mA, C _L =0pF, f=1MHz, t _r =t _f =1ns	V _{CCA} =V _{CCB} =2.5V		1.3		рF
Capacitance -Port A		-1 -1 -1	V _{CCA} =V _{CCB} =3.3V		1.8		рF
Deven Dissingtion			V _{CCA=} V _{CCB} =1.8V		12		рF
Power Dissipation	CPDB	$I_0=0$ mA, C _L =0pF,	V _{CCA} =V _{CCB} =2.5V		15		рF
Capacitance -B Port	$f=1MHz, t_r=t_f=1ns$		V _{CCA} =V _{CCB} =3.3V		18		pF


TEST CIRCUIT AND WAVEFORMS

TEST	S
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	V_{LOAD}
t _{PHZ} /t _{PZH}	GND

Note: CL includes probe and jig capacitance.

Vcc	CL	R∟
1.65V ~3.6V	15pF	2ΚΩ

Propagation Delay Times

- Notes: 1. V_{CCI} is the supply pin associated with the input port.
 - 2. V_{OH} and V_{OL} are typical output voltage levels that occur with specified RL and C_L.

DETAILED DESCRIPTION

Overview

The **2N7001** is a single-bit dual-supply buffered voltage signal converter that can be used to up or downtranslate a single unidirectional signal. The device is operational with both V_{CCA} and V_{CCB} supplies down to 1.65V and up to 3.6V. V_{CCA} defines the input threshold voltage on the A input while V_{CCB} defines the output voltage on the B output.

FEATURES DESCRIPTION

Up-Translation or Down-Translation from 1.65V to 3.60V

The V_{CCA} and V_{CCB} pins can both be supplied by a voltage range from 1.65V to 3.6V. This voltage range makes the device suitable for translating between any of the voltage nodes (1.8V, 2.5V, and 3.3V).

Balanced CMOS Push-Pull Outputs

A balanced output allows the device to sink and source similar currents. The drive capability of this device may create fast edges into light loads, so routing and load conditions should be considered to prevent ringing.

Additionally, the outputs of this device are capable of driving larger currents than the device can sustain without being damaged. It is important for the output power of the device to be limited to avoid damage due to overcurrent.

The electrical and thermal limits defined the in the Absolute Maximum Raings must be followed at all times.

Standard CMOS Inputs

Standard CMOS inputs are high impedance and are typically modeled as a resistor in parallel with the input capacitance shown in the Electrical Characteristics. The worst case resistance is calculated with the maximum input voltage, shown in the Absolute Maximum Ratings, and the maximum input leakage current, shown in the Electrical Characteristics, using Ohm's law ($R = V \div I$).

Signals applied to the inputs need to have fast edge rates, as defined by $\Delta t/\Delta v$ in the Recommended Operating Conditions to avoid excessive current consumption and oscillations. If a slow or noisy input signal is required, a device with a Schmitt-trigger input should be used to condition the input signal prior to the standard CMOS input.

Negative Clamping Diodes

The inputs and outputs to this device have negative clamping diodes as shown in Figure 1.

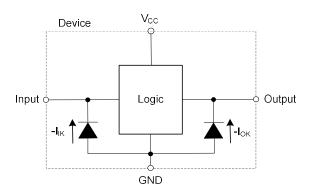


Figure 1. Electrical Placement of Clamping Diodes for Each Input and Output

Partial Power Down (loff)

The inputs and outputs for this device enter a high-impedance state when the supply voltage is 0 V. The maximum leakage into or out of any input pin or output pin on the device is specified by loff in the Electrical Characteristics.

Over-voltage Tolerant Inputs

Input signals to this device can be driven above the input supply voltage (VCCA), as long as they remain below the maximum input voltage value specified in the Recommended Operating Conditions

TYPICAL APPLICATION CIRCUIT

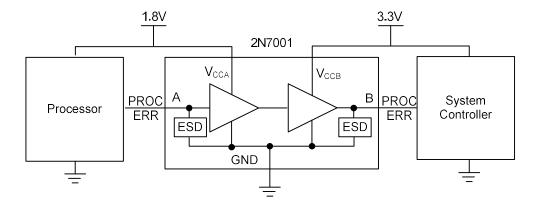


Figure 2. Processor Error Up Translation Application

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

