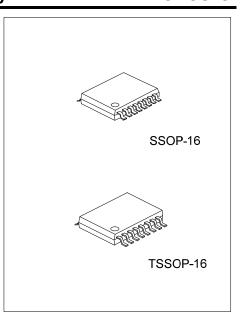
U74CBTLV3257

Preliminary

CMOS IC

LOW-VOLTAGE DUAL 4-BIT 1-OF-2 FET MULTIPLEXER/DEMULTIPLEXER

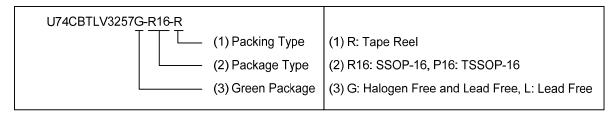

■ DESCRIPTION

The **U74CBTLV3257** device is a 4-bit 1-of-2 high-speed FET multiplexer/demultiplexer. The low on state resistance of the switch allows connections to be made with minimal propagation delay.

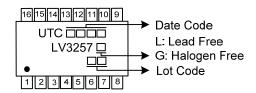
The select (S) input controls the data flow. The FET multiplexers/demultiplexers are disabled when the output-enable ($\overline{\text{OE}}$) input is high.

This device is fully specified for partial-power-down applications using loff. The loff feature ensures that damaging current will not backflow through the device when it is powered down. The device has isolation during power off.

To ensure the high-impedance state during power up or power down, $\overline{\text{OE}}$ should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

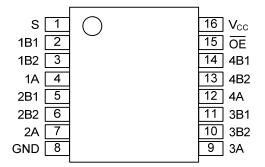


■ FEATURES


- * 5Ω Switch Connection Between Two Ports
- * Rail-to-Rail Switching on Data I/O Ports
- * I_{OFF} Supports Partial-Power-Down Mode Operation

■ ORDERING INFORMATION

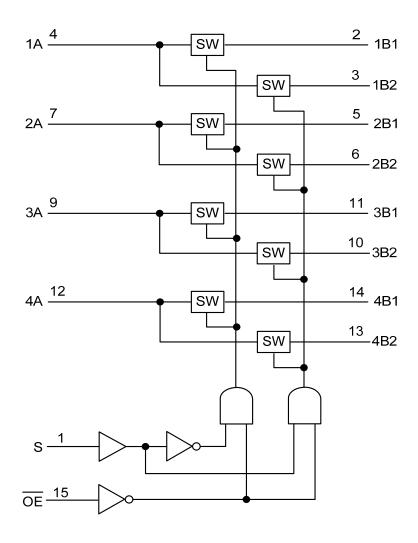
Ordering	Number	Dealters	Dealine
Lead Free	Halogen Free	Package	Packing
U74CBTLV3257L-R16-R	U74CBTLV3257G-R16-R	SSOP-16	Tape Reel
U74CBTLV3257L-P16-R	U74CBTLV3257G-P16-R	TSSOP-16	Tape Reel



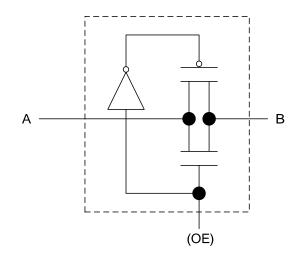
■ MARKING

www.unisonic.com.tw 1 of 7

■ PIN CONFIGURATION


■ PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	DESCRIPTION
1	S	I	Select
2	1B1	I/O	I/O Channel 1 I/O 1
3	1B2	I/O	I/O Channel 1 I/O 2
4	1A	I/O	Channel 1 O/I common
5	2B1	I/O	I/O Channel 2 I/O 1
6	2B2	I/O	I/O Channel 2 I/O 2
7	2A	I/O	Channel 2 O/I common
8	GND	-	Ground
9	3A	I/O	Channel 3 O/I common
10	3B2	I/O	I/O Channel 3 I/O 1
11	3B1	I/O	I/O Channel 3 I/O 2
12	4A	I/O	Channel 4 O/I common
13	4B2	I/O	I/O Channel 4 I/O 1
14	4B1	I/O	I/O Channel 4 I/O 2
15	ŌĒ	I	Output Enable, Active-Low
16	Vcc	-	Power


■ **FUNCTION TABLE** (Each Multiplexer / Demultiplexer)

INP	UTS	FUNCTION			
ŌĒ	S	FUNCTION			
L	L	A port = B1 port			
L	Н	A port = B2 port			
Н	Х	Disconnect			

■ LOGIC DIAGRAM (positive logic)

■ SIMPLIFIED SCHEMATIC (each FET switch)

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	CONDITIONS	RATINGS	UNIT
Supply Voltage	V_{CC}		-0.5 ~ 4.6	V
Input Voltage (Note 2)	V_{IN}		-0.5 ~ 4.6	V
Continuous Channel Through V _{CC} or GND			128	mA
Input Clamp Current	I _{IK}	V _{IN} <0	-50	mA
Junction Temperature	T_J		+150	°C
Storage Temperature Range	T_{STG}		-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
lum ation to Ameleiant	SSOP-16	0	120	°C/W
Junction to Ambient	TSSOP-16	Θ_{JA}	110	°C/W

■ RECOMMENDED OPERATING COMDITIONS

(Over operating free-air temperature range, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc		2.3		3.6	V
Himb control in mutualtana		V _{CC} =2.3V~2.7V	1.7			.,
High-control input voltage	V _{IH}	V _{CC} =2.7V~3.6V	2			V
Lave agentual immediately	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	V _{CC} =2.3V~2.7V			0.7	.,
Low-control input voltage V _{IL}	V_{IL}	V _{CC} =2.7V~3.6V			0.8	V
Operating Temperature	T _A		-40		+125	°C

Note: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

■ ELECTRICAL CHARACTERISTICS (Unless otherwise specified)

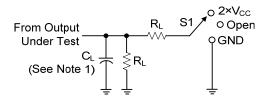
PARAMETER SYMBOL		TEST CONDITIONS		T _A =25°C		T _A =-40°C~+125°C			LINIT			
PARAMET	EK	SYMBOL	IESI	CONDIT	IONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Digital Input Diode	e Voltage	V_{IK}	$V_{CC} = 3V, I_1$	=-18mA				-1.2			-1.2	V
Input Leakage Cu	rrent	I _I	V _{CC} =3.6V,	V _I =V _{CC} oi	GND			±1			±20	μΑ
Power off Leakag	e Current	I _{OFF}	$V_{CC}=0$, V_{I}	or V _O =0 to	3.6V			±15			±50	μΑ
Quiescent Supply	Current	Icc	V _{CC} =3.6V, I _O =0	V _{CC} =3.6V, V _I = V _{CC} or GND,				10			50	μΑ
Additional Quiescent Supply Current (Note 1)	Control Inputs	/\loo	V _{CC} =3.6V, One input at 3V, Other inputs at V _{CC} or GND				300			2000	μΑ	
			V _{CC} =2.3V	V _I =0	I _I =64mA		5	8			15	Ω
			TYP at	V ₁ –0	I _I =24mA		5	8			15	Ω
Resistor between	two	В	$V_{CC}=2.5V$	V₁=1.7V	I _I =15mA		27	40			60	Ω
ports (Note 2)		R _{ON}		\/ - 0\/	I _I =64mA		5	7			11	Ω
			V _{CC} =3V	V _I =0V	I _I =24mA		5	7			11	Ω
				V _I =2.4V	I _I =15mA		10	15			26	Ω

Notes: 1.This is the increase in supply current for each input that is at the specified voltage level, rather than V_{CC} or GND.

2. Measured by the voltage drop between the A and the B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

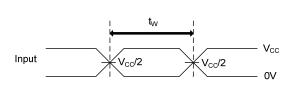
■ SWITCHING CHARACTERISTICS

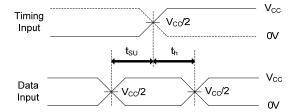
See Fig. 1 and Fig. 2 for test circuit and waveforms.


DADAMETED	SYMBOL	TEST CONDITIONS	T _A =25°C			T _A =-40°C~+125°C			UNIT
PARAMETER	STIMBOL	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
Propagation Delay From		V _{CC} =2.5V±0.2V			0.15			0.3	ns
Input (A or B) (Note) to Output (B or A)	t _{pd}	V _{CC} =3.3V±0.3V			0.25			0.5	ns
Propagation Delay From	(t_{PLH}/t_{PHL})	V _{CC} =2.5V±0.2V	1.8		7.3			8.8	ns
Input (S) to Output (A or B)		V _{CC} =3.3V±0.3V	1.8		6.8			8.3	ns
Propagation Delay From		V _{CC} =2.5V±0.2V	1.7		7			9	ns
Input (S) to Output (A or B)	t_{en}	V _{CC} =3.3V±0.3V	1.7		6.5			8.5	ns
Propagation Delay From	(t _{PZL} /t _{PZH})	V _{CC} =2.5V±0.2V	1.9		7			9	ns
Input (OE) to Output (A or B)	(PZL/PZH)	V _{CC} =3.3V±0.3V	2.0		6.5			8.5	ns
Propagation Delay From		V _{CC} =2.5V±0.2V	1		5.5			7.5	ns
Input (S) to Output (A or B)	t _{dis} (t _{PLZ} /t _{PHZ})	V _{CC} =3.3V±0.3V	1		5.3			7.3	ns
Propagation Delay From		V _{CC} =2.5V±0.2V	1		5.5			7	ns
Input (OE) to Output (A or B)		V _{CC} =3.3V±0.3V	1.6		5.5			7	ns

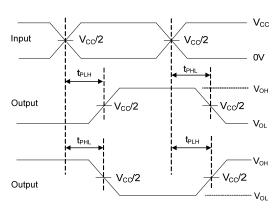
Note: The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance, when driven by an ideal voltage source (zero output impedance).

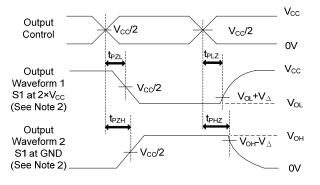
■ **OPERATING CHARACTERISTICS** (T_A=25°C, unless otherwise specified)


PARAMET	ER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Control input Capacitance	Control Inputs	Cı	V _O =3V or 0		3		pF
I/O Capacitance	A Port	_	V =3V or 0 OF =V		10.5		рF
(OFF)	B Port	C _{IO(OFF)}	V_0 =3V or 0, OE = V_{CC}		5.5		рF


■ TEST CIRCUIT AND WAVEFORMS

V_{CC}	C _L	R_L	VΔ
2.5V±0.2V	30pF	500Ω	0.15V
3.3V±0.3V	50pF	500Ω	0.3V


TEST	S1
t _{PLH} /t _{PHL}	Open
t_{PLZ}/t_{PZL}	2×Vcc
t_{PHZ}/t_{PZH}	GND



PULSE DURATION

SETUP AND HOLD TIMES

PROPAGATION DELAY TIMES

ENABLE AND DISABLE TIMES

Notes: 1. C_L includes probe and jig capacitance.

- 2. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
- 3. All input pulses are supplied by generators having the following characteristics: $P_{RR} \le 10 MHz$, $Z_O = 50 \Omega$, $t_r \le 2 ns$.
- 4. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- 5. t_{PZL} and t_{PZH} are the same as t_{en} .
- 6. t_{PLH} and t_{PHL} are the same as t_{pd} .

Load circuitry and voltage waveforms

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.