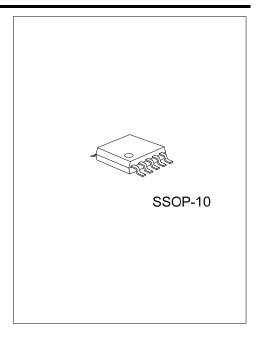
UNISONIC TECHNOLOGIES CO., LTD

F1862

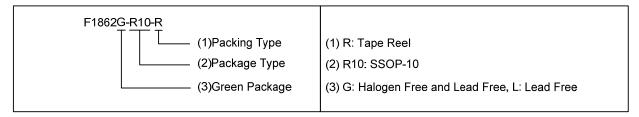
Preliminary

LINEAR INTEGRATED CIRCUIT

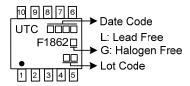

SINGLE-PHASE FULL-WAVE **FAN MOTOR DRIVER**

DESCRIPTION

The UTC F1862 is a Single-phase full-wave motor driver designed specially for small DC fans. For example, CPU cooling fans.

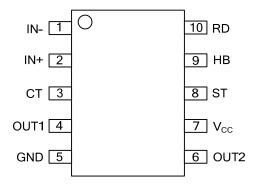

FEATURES

- * Wide Operating Voltage 5V or 12V Are Both Acceptable
- * Built-In Hall Amplifier And Hall Bias Circuit
- * Built-In Lockup And Thermal Protection With Automatic **Recovery Circuits**
- * Latch-Type Lockup Detection Output (RD) is Low During Rotation And High During Stop.
- * Start/Stop Pin For Standby Mode Control



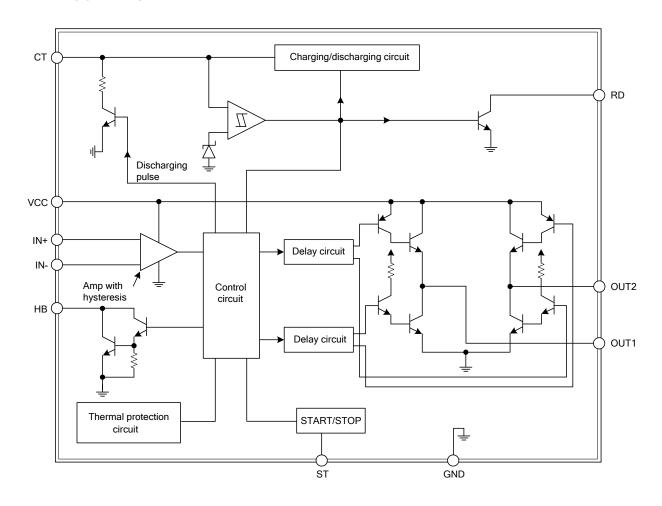
ORDERING INFORMATION

Ordering	Number	Package	Dealine	
Lead Free	d Free Halogen Free		Packing	
F1862L-R10-R	F1862G-R10-R	SSOP-10	Tape Reel	



MARKING

www.unisonic.com.tw 1 of 6


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	IN-	Hall signal input pin
2	IN+	Hall signal input pin
3	CT	This pin serves timing capacitor connecting pin between CT and GND.
4	OUT1	Single-phase coil output pin
5	GND	Ground
6	OUT2	Single-phase coil output pin
7	V_{CC}	Power supply pin for whole I _C .
8	ST	When input to this pin is High, motor drive is stopped (OUT is high impedance).
9	НВ	Hall bias switching pin.
10	RD	Latch-type lockup detection output (RD) is low during rotation and high during stop.

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Maximum Supply Voltage	V _{CC MAX}	17	V
Maximum Output Current	I _{OUT MAX}	0.8	Α
Maximum Output Withstand Voltage	V _{OUT MAX}	17	V
RD Maximum Output Withstand Voltage	V _{R MAX}	17	V
RD Maximum Output Current	I _{R MAX}	5	mA
HB Maximum Output Current	I _{B MAX}	10	mA
ST Maximum Input Voltage	V _{ST MAX}	15	V
Allowable Power Dissipation (With Specified Substrate (Note 2))	P _{D_MAX}	800	mW
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-55~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

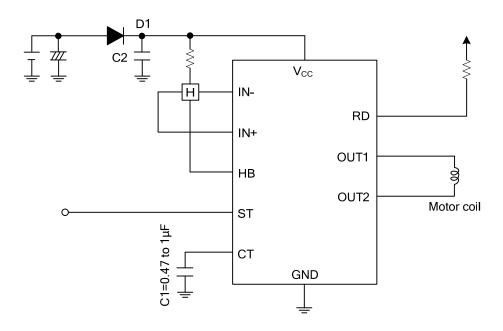
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ALLOWABLE OPERATING RANGE (T_A=25°C , unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{CC}	3.8 ~ 16.8	V
ST Input High-Level Voltage	STH	3 ~ 14	V
ST Input Low-Level Voltage	STL	-0.3 ~ 0.4	V
Hall Input Common-Mode Input Voltage Range	V _{ICM}	0.2 ~ V _{CC} -1.5	V

■ **ELECTRICAL CHARACTERISTICS** (V_{CC}=5V, T_A=25°C, unless otherwise specified)

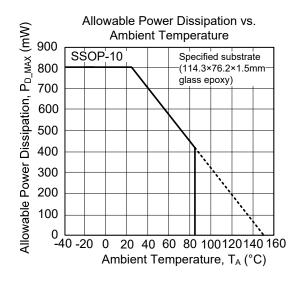
PARAMETER	SYMBOL	TEST CONDITIONS		TYP	MAX	UNIT
		In Drive Mode (CT=[L], ST=[L])		6.5	9.1	mA
Circuit Current	Icc	In Lockup Protecting Mode (CT=[H], ST=[L])		2.2	3.1	mA
		In Standby Mode (ST=[H])		110	150	μΑ
Lock Detection Capacitor Charging Current	I _{CT1}		1.9	2.8	3.7	μΑ
Capacitor Discharging Current	I _{CT2}		0.32	0.46	0.6	μΑ
Capacitor Charging/Discharging Current Ratio	R _{CT}	RCD=ICT1/ICT2	5.0	6.0	7.0	
CT Charging Voltage	V_{CT1}		2.55	2.75	2.95	V
CT Discharging Voltage	V_{CT2}		1.6	1.8	2.0	V
Output Low-Level Voltage	V_{OL}	I _O =200mA		0.2	0.3	V
Output High-Level Voltage	V_{OH}	I _O =200mA	3.9	4.1		V
Hall Input Sensitivity	V_{HN}	Zero Peak Value. (Including Offset, Hysteresis)		7	15	mV
RD Output Pin Low-Level Voltage	V_{RD}	I _{RD} =5mA		0.1	0.3	V
RD Output Pin Leakage Current	I_{RDL}	V _{RD} =15V			30	μΑ
HB Output Low-Level Voltage	V_{HBL}	I _{HB} =5mA		1.0	1.3	V
ST Pin Input Current	I _{ST}	V _{ST} =5V		75	100	μA


^{2.} Specified substrate: 114.3×76.2×1.5mm glass epoxy.

■ TRUTH TABLE

ST	IN-	IN+	CT	OUT1	OUT2	RD	НВ	MODE
Н				OFF	OFF	OFF	OFF	Standby
	Н	L		Н	L			O
L	L	Н	L	L	Н	L	L	Operating
			Н	OFF	OFF	OFF	L	Lock protection

Note1: The RD output is latched at "L"-level in operating mode and "H"-level in stop mode.


■ TYPICAL APPLICATION CIRCUIT

Notes: 1. D1 is used to prevent IC destruction caused by reverse-connection. It can be omitted if no problems are expected.

- 2. C2 is used to apply a kickback regenerative current when using the IC with the coil current over 500mA.
- 3. When CT is not used, it should be connected to ground.
- 4. When RD, ST, and HB are not used, they should be left open.

■ TYPICAL CHARACTERISTICS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.