UD182012

18V, 2A SYNC.STEP-DOWN CONVERTER

- DESCRIPTION

The UTC UD182012 is a monolithic buck switching regulators based on 12 architecture for fast transient response. Operating with an input range of $4.5 \mathrm{~V} \sim 18 \mathrm{~V}$, UTC UD182012 delivers 2 A of continuous output current with two integrated N -Channel MOSFETs. The internal synchronous power switches provide high efficiency without the use of an external Schottky diode. At light loads, UTC UD182012 operates in low frequency to maintain high efficiency.

UTC UD182012 guarantees robustness with output short protection, thermal protection, current run-away protection and input under voltage lockout.

- FEATURES

* 4.5 V to 18 V operating input range 2 A output current
* Up to 95% efficiency
* PFM at light load
* 600kHz switching frequency
* Internal soft-start
* Input under-voltage lockout
* Current run-away protection
* Output short protection
* Thermal protection
- ORDERING INFORMATION

Ordering Number		Package	Packing
Lead Free	Halogen Free		
UD182012L-K06-2020-R	UD182012G-K06-2020-R	DFN2020-6	Tan

| UD182012G-K06-2020-R | (1)Packing Type | (1) R: Tape Reel |
| :--- | :--- | :--- | :--- |
| | (2)Package Type | (2) K06-2020: DFN2020-6 |
| | (3)Green Package | (3) G: Halogen Free and Lead Free |

- MARKING
- PIN CONFIGURATION

- PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	BST	Connect a $0.1 \mu \mathrm{~F}$ capacitor between BST and SW pin to supply voltage for the top switch driver.
2	SW	SW is the switching node that supplies power to the output. Connect the output LC filter from SW to the output load.
3	EN	Drive EN pin high to turn on the regulator and low to turn off the regulator.
4	FB	Output feedback pin. FB senses the output voltage and is regulated by the control loop to 0.6V. Connect a resistive divider at FB.
5	$\mathrm{~V}_{\text {IN }}$	Input voltage pin. VIN supplies power to the IC. Connect a 4.5V to 18V supply to VIN and bypass VIN to GND with a suitably large capacitor to eliminate noise on the input to the IC.
6	GND	Ground pin.
Exposed Pad	GND	Connect exposed pad to GND.

- BLOCK DIAGRAM

- ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT	
$V_{I N}$, EN Pin		$-0.3 \sim 20$	V	
SW Pin		$-0.3 \mathrm{~V}(-5 \mathrm{~V}$ for 10 ns$)$ to $20 \mathrm{~V}(22 \mathrm{~V}$ for 10 ns$)$		
BST Pin		$\mathrm{SW}-0.3 \mathrm{~V}$ to $\mathrm{SW}+4 \mathrm{~V}$		
All other Pins		$-0.3 \sim 4$	V	
Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$	
Storage Temperature	$\mathrm{T}_{\text {STG }}$	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$	
RECOMMENDED OPERATING CONDITIONS				
Input Voltage	$\mathrm{V}_{\text {IN }}$	$4.5 \sim 18$	V	
Output Voltage	$\mathrm{V}_{\text {OUT }}$	$0.6 \sim \mathrm{~V}_{\text {IN }} \times \mathrm{D}_{\text {MAX }}$	$-40 \sim+125$	
Operation Junction Temperature	T_{J}	${ }^{\circ} \mathrm{C}$		

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- THERMAL DATA

PARAMETER	SYMBOL	RATING	UNIT
Junction to Ambient	θ_{JA}	75	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction to Case	θ_{JC}	20	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Note: Device mounted on FR-4 substrate Pc board, 2 oz copper, with 1inch square copper plate.

- ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{I N}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise stated)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
$\mathrm{V}_{\text {IN }}$ Under Voltage Lockout Threshold	$\mathrm{V}_{\text {IN MIN }}$	$\mathrm{V}_{\text {IN }}$ rising		4.2		V
$\mathrm{V}_{\text {IN }}$ Under voltage Lockout Hysteresis	$\mathrm{V}_{\text {IN MIN_HYST }}$			300		mV
Shutdown Supply Current	$\mathrm{I}_{\text {SD }}$	$\mathrm{V}_{\mathrm{EN}}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
Supply Current	IQ	$\mathrm{V}_{\text {EN }}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{FB}}=1 \mathrm{~V}$		140		$\mu \mathrm{A}$
Feedback Voltage	$\mathrm{V}_{\text {FB }}$	$4.5 \mathrm{~V}<\mathrm{V}_{\text {VIN }}<18 \mathrm{~V}$		600		mV
FB Leakage Current	$\mathrm{I}_{\text {FB }}$	$\mathrm{V}_{\mathrm{FB}}=0.85 \mathrm{~V}$			100	nA
Top Switch Resistance	$\mathrm{R}_{\text {DS(ON)T }}$			130		$\mathrm{m} \Omega$
Bottom Switch Resistance	$\mathrm{R}_{\text {DS(ON)B }}$			70		$\mathrm{m} \Omega$
Top Switch Leakage Current	$\mathrm{I}_{\text {LEAK_TOP }}$	$\mathrm{V}_{\text {IN }}=18 \mathrm{~V}, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=0 \mathrm{~V}$			1	$\mu \mathrm{A}$
Bottom Switch Leakage Current	$\mathrm{l}_{\text {LEAK Bot }}$	$\mathrm{V}_{\text {IN }}=18, \mathrm{~V}_{\text {EN }}=0 \mathrm{~V}, \mathrm{~V}_{\text {SW }}=18 \mathrm{~V}$			1	$\mu \mathrm{A}$
Bottom Switch Current Limit	ILim_bot			2.7		A
Minimum On Time (Note 1)	Ton min			120		ns
Minimum Off Time	Toff MIN	$\mathrm{V}_{\mathrm{FB}}=0.4 \mathrm{~V}$		150		ns
Maximum On Time	$\mathrm{T}_{\text {ON Max }}$			4		us
EN Rising Threshold	$\mathrm{V}_{\text {EN_H }}$	$\mathrm{V}_{\text {EN }}$ rising		1.2		V
EN Falling Threshold	$\mathrm{V}_{\text {EN }} \mathrm{L}$	$\mathrm{V}_{\text {EN }}$ falling		1.05		V
Soft-Start Period (Note 1, 2)	$\mathrm{t}_{\text {ss }}$			1		ms
Frequency	$\mathrm{f}_{\text {sw }}$			600		kHz
Thermal Shutdown (Note 1)	$\mathrm{T}_{\text {TSD }}$			160		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis (Note 1)	$\mathrm{T}_{\text {TSD HYST }}$			20		${ }^{\circ} \mathrm{C}$

Notes: 1. Guaranteed by design.
2. Soft-Start Period is tested from 10% to 90% of the steady state output voltage.

$\mathrm{t}_{\text {ss }}$ Waveform

■ TYPICAL APPLICATION CIRCUIT

$V_{\text {FB }}=V_{\text {OUT }} \times \frac{R 4}{R 4+R 3}$

[^0]
[^0]: UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

