

UTC UNISONIC TECHNOLOGIES CO., LTD

ULV5532

Preliminary

1.8V, 42µA, RAIL-TO-RAIL INPUT/OUTPUT, ZERO DRIFT OP-AMPS

DESCRIPTION

The dual UTC ULV5532 CMOS operational amplifiers provide very low offset voltage and zero-drift over time and temperature.

The UTC ULV5532 operate with a single supply voltage as low as 1.8V, while drawing 42µA per amplifier of quiescent current with a gain bandwidth product of 350kHz. It's unity gain stable, have no 1/f noise, have good Power Supply Rejection Ratio (PSRR) and Common Mode Rejection Ratio (CMRR), and feature rail-to-rail input and output swing.

FEATURES

- * Low Supply Current: 42 µA per Amplifier
- * Low Offset Voltage: 100µV (Max)
- * 0.1Hz to 10Hz Noise: 1.1µVPP
- * Slew Rate: 0.16V/µs
- * Bandwidth: 350kHz
- * High Gain, 130dB High CMRR and PSRR
- * Rail-to-rail Input and Output Swing

ORDERING INFORMATION

Ordering Number		Daakaga	Decking	
Lead Free	Halogen Free	Раскаде	Packing	
ULV5532L-S08-R	ULV5532G-S08-R	SOP-8	Tape Reel	

ULV5532G-S08-R	
(1) Packing Type	(1) R: Tape Reel
(2) Package Type	(2) S08: SOP-8
(3) Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION			
1	OUTA	Output pin of A AMP			
2	-INA	Inverting input pin of A AMP			
3	+INA	Non-inverting input of A AMP			
4	-Vs	Negative power supply			
5	+INB	Non-inverting input of B AMP			
6	-INB	Inverting input pin of B AMP			
7	OUTB	Output pin of B AMP			
8	+V _S	Positive power supply			

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

[Over operating free-air temperature range (unless otherwise specified.)]

		//	
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{cc}	6	V
Input Voltage	VI	V ⁻ - 0.2~ V ⁺ + 0.2	V
Input Current +IN, -IN (Note 2)		±20	mA
Output Short-Circuit Duration (Note 3)		Indefinite	
Current at Supply Pins		±50	mA
Maximum Junction Temperature	TJ	+150	°C
Operating Temperature Range	T _{OPR}	-40 ~ +125	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. The inputs are protected by ESD protection diodes to each power supply. If the input extends more than 500mV beyond the power supply, the input current should be limited to less than 10mA.
- 3. A heat sink may be required to keep the junction temperature below the absolute maximum. This depends on the power supply voltage and how many amplifiers are shorted. Thermal resistance varies with the amount of PC board metal connected to the package. The specified values are for short traces connected to the leads.

ELECTRICAL CHARACTERISTICS

 $(T_A=27^{\circ}C, V_S=5V, R_L=10k\Omega, V_{CM}=V_{DD}/2, unless otherwise specified.)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage Range	Vs		1.8		5.5	V
Quiescent Current per Amplifier	lq			42	60	μA
	Vos	V _{CM} =2.5V	-100	1	100	μV
Input Offset Voltage		V _{CM} =0.05~4.95V	-110		110	μV
		V _S =1.8V, V _{CM} =0.9V	-120		120	μV
vs Temperature	dV _{OS} /dT			0.008	0.05	µV/°C
vs Power Supply	PSRR	Vs = 3V~ 5V	90	120		dB
Input Voltage Noise	V _N	f=0.01Hz to 1Hz		0.4		μVpp
		f=0.1Hz to 10Hz		1.1		μVpp
Input Voltage Noise Density	en	f=1kHz		55		nV/√Hz
	C _{IN}	Differential		3		pF
input Capacitor		Common-Mode		2		pF
Input Bias Current	-			±50		pА
Over Temperature	IB			±800		pА
Input Offset Current	los			±100		pА
Common-Mode Voltage Range	V _{CM}		(V-)-0.1		(V+)+0.1	V
Common-Mode Rejection Ratio	CMRR	V _{CM} =0.5 to 4.5V	90	120		dB
Output Voltage Swing from Rail	Vo	$R_L=10k\Omega$		5	25	mV
Short-Circuit Current	I _{SC}			±52		mA
Unity Gain Bandwidth	GBWP	C _L =100pF		350		kHz
Slew Rate	SR	G=+1, C _L =100pF		0.23		V/µs
Overload Recovery Time	t _{OR}	G=-10		60		μs
Settling Time to 0.01%	ts	C _L =100pF, G=+1, 5V Step		40		μs
Open-Loop Voltage Gain	A _{VOL}	$(V-)+100mV < V_0 < (V+)-100mV, R_L=100k\Omega$	94	120		dB

ULV5532

TYPICAL APPLICATION CIRCUIT

Bi-Directional Current Sense Amplifier

Thermistor Measurement

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

