UNISONIC TECHNOLOGIES CO., LTD

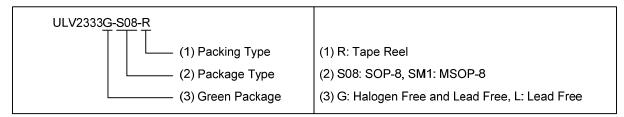
ULV2333 Preliminary CMOS IC

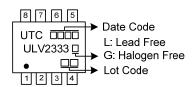
1.8V, MICRO-POWER CMOS ZERO-DRIFT OPERATIONAL **AMPLIFIERS**

DESCRIPTION

The dual UTC ULV2333 CMOS operational amplifiers provide very low offset voltage and zero-drift over time and temperature.

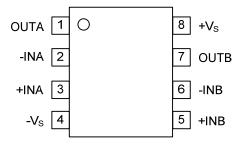
The miniature, high precision, low quiescent current amplifiers offer high-impedance inputs that have a wide input common mode range of 100mV beyond the rails and rail-to-rail output that swings within 35mV of the rails. Single or dual supplies as low as 1.8V (±0.9V) and up to 5.5V (±2.75V) may be used. They are optimized for low voltage, single or dual supply operation.


The UTC ULV2333 offers excellent CMRR without the crossover associated with traditional complementary input stages. This design results in superior performance for driving analog-to-digital converters (ADCs) without degradation of differential linearity.


- * Supply Voltage Range: 1.8V~5.5V
- * Rail-to-Rail Input and Output
- * Low Offset Voltage: 25µV (Max.)
- * Low 0.1Hz to 10Hz Noise: $2\mu V_{P-P}$
- * Quiescent Current: 80µA/Amplifier (Typ.)
- * Single or Dual Supply Operation
- * Integrated RFI Filter

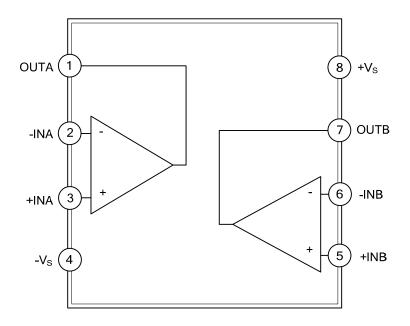
ORDERING INFORMATION

Ordering	Number	Dookogo	Dooking	
Lead Free Halogen Free		Package	Packing	
ULV2333L-S08-R	ULV2333G-S08-R	SOP-8	Tape Reel	
ULV2333L-SM1-R	ULV2333G-SM1-R	MSOP-8	Tape Reel	



MARKING

SOP-8 MSOP-8


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	OUTA	Output (op amp A)		
2	-INA	verting Input (op amp A)		
3	+INA	Non-inverting Input (op amp A)		
4	-V _S	legative Power Supply		
5	+INB	Non-inverting Input (op amp B)		
6	-INB	Inverting Input (op amp B)		
7	OUTB	Output (op amp B)		
8	+V _S	Positive Power Supply		

■ BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V_{CC}	6	V
Input Common Mode Voltage Range	VI	$(-V_S)$ - 0.3 ~ $(+V_S)$ + 0.3	V
Junction Temperature	TJ	+150	°C
Storage Temperature Range	T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	RATINGS	UNIT
Specified Voltage Range	V _{CC}	1.8 ~ 5.5	>
Operating Temperature Range	T _A	-40 ~ +125	°C

■ ELECTRICAL CHARACTERISTICS

(At T_A =+25°C, V_S = 1.8V~5.5V, V_{CM} = $V_S/2$, V_{OUT} = $V_S/2$ and R_L = 10k Ω to $V_S/2$, Full = -40°C~ +125°C, unless otherwise noted.)

outer mod notodily							
PARAMETER	SYMBOL	TEST CONDITIONS		MIN	TYP	MAX	UNIT
INPUT CHARACTERISTICS							
Input Offset Voltage	Vos	V _S = 5V	T _A =25°C		14	25	μV
Input Offset Voltage Drift	$\Delta V_{OS}/\Delta T_A$	T _A =-40°C~+125°C			0.08		μV/°C
Input Bias Current	Ι _Β				130		pА
Input Common Mode Voltage Range	V _{CM}			(-V _S) - 0.1		(+V _S) + 0.1	V
Common-Mode Rejection	CMRR	$(-V_S) - 0.1V < V_{CM} < (+V_S)$ + 0.1V	T _A =25°C	89	100		dB
Ratio			Full Range	85			dB
Open-Loop Voltage Gain	A _{OL}	(-V _S) + 0.1V < V _{OUT} <	T _A =25°C	95	121		dB
Open-Loop voltage Cam	AOL	$(+V_S)$ - 0.1V, R_L = 10k Ω	Full Range	94			dB
INPUT IMPEDANCE							
Differential		T _A =+25°C			10 ⁹		Ω
Common Mode		T _A =+25°C			10 ⁹		Ω
OUTPUT CHARACTERISTICS							
Output Voltage Swing from		$R_L = 10k\Omega$	T _A =25°C		24	35	mV
Rail			Full Range			37	mV
Output Short-Circuit Current	I _{sc}	V _S = 1.8V			4		mA
Output Short-Circuit Current		V _S = 5V			40		mA
Open-Loop Output Impedance		$f = 350kHz, I_{OUT} = 0$			1		kΩ
POWER SUPPLY							
Specified Voltage Range	Vs	T _A =-40°C~+125°C		1.8		5.5	V
Power Supply Pajection Patio	PSRR	V _S = 1.8V~5.5V	T _A =25°C		4	20	μV/V
Power Supply Rejection Ratio			Full Range			25	μV/V
Quioscont Current/Amplifier	IQ	I = 0	T _A =25°C		80	148	μA
Quiescent Current/Amplifier		I _{OUT} = 0	Full Range			192	μA
Turn-On Time		V _S = 5V			200		μs
DYNAMIC PERFORMANCE							
Gain-Bandwidth Product	GBP	C _L = 100pF			350		kHz
Slew Rate	SR	G = +1			0.25		V/µs
NOISE							
Input Voltage Noise		f = 0.1Hz~10Hz			2		μV_{P-P}

■ TYPICAL APPLICATION CIRCUIT

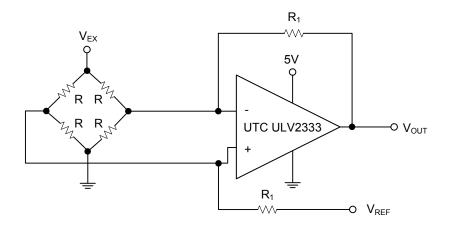


Figure 1. Bridge Amplifier Configuration

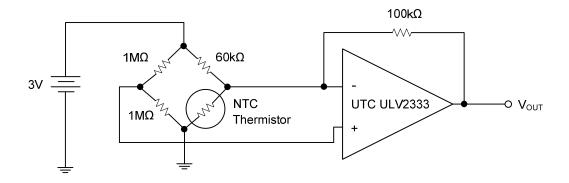


Figure 2. Thermistor Measurement

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.