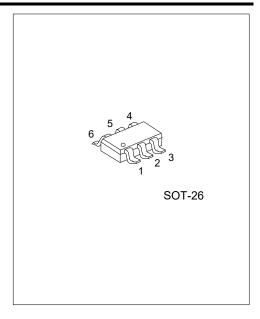


1 CHANNEL AUTO-BIDIRECTIONAL MULTI-VOLTAGE LEVEL TRANSLATOR FOR OPEN-DRAIN APPLICATION

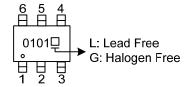

DESCRIPTION

The UTC **ULSF0101** family supports up to 100MHz up translation and greater than 100MHz down translation at≤30pF cap load and up to 40MHz up/down translation at 50pF cap load which allows the UTC **ULSF0101** family to support more consumer or telecom interfaces (MDIO or SDIO). The UTC **ULSF0101** family has bidirectional voltage translation without the need for DIR pin which minimizes system effort (for PM Bus, I²C, or SM Bus).

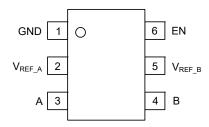
The UTC **ULSF0101** family supports 5V tolerance on I/O port which makes it compatible with TTL levels in industrial and telecom applications. The UTC **ULSF0101** family is able to setup different voltage translation levels on each channel which makes it very flexible.


■ FEATURES

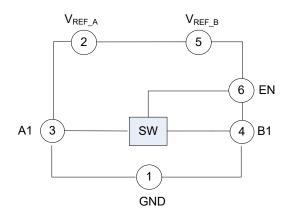
- * Provides bidirectional voltage translation with no direction pin
- * Supports up to 100MHz up translation and greater than 100MHz down translation at ≤ 30pF cap load and up to 40MHz up/down translation at 50pF cap load.
- * Allow bidirectional voltage level translation between
- 0.95V ↔ 1.8/2.5/3.3/5V
- 1.2V↔1.8/2.5/3.3/5V
- 1.8V ↔ 2.5/3.3/5V
- 2.5V ↔ 3.3/5V
- $-3.3V \leftrightarrow 5V$
- * Low standby current
- * 5V tolerance I/O port to support TTL
- * Low Ron provides less signal distortion
- * High-Impedance I/O pins for EN=Low



■ ORDERING INFORMATION


Ordering	Number	Deelsene	Dealine	
Lead Free	Halogen Free	Package	Packing	
ULSF0101L-AG6-R	ULSF0101G-AG6-R	SOT-26	Tape Reel	

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	GND	Ground
2	V_{REF_A}	Reference supply voltage
3	An	Data port
4	Bn	Data port
5	V_{REF_B}	Reference supply voltage
6	EN	Switch enable input; connect to V _{REF_B} and pull-up through a high R(200K)

■ BLOCK DIAGRAM

■ FUNCTION TABLE

INPUT EN PIN	FUNCTION	
Н	An = Bn	
L	H-Z	

Note: EN is controlled by V_{REF_B} logic levels.

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	RATINGS	UNIT
Input Voltage (Note 3)	V_{IN}		-0.5 ~ 7	V
Input/output Voltage (Note 3)	V _{I/o}		-0.5 ~ 7	V
Continuous channel current			128	mA
Input Clamp Current	I _{IK}	V _{IN} <0V	-50	mA
Storage Temperature Range	T _{STG}		-65 ~ +150	°C

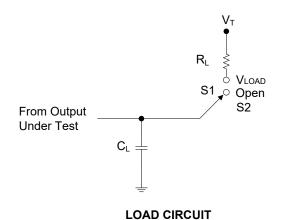
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ RECOMMENDED OPERATING CONDITIONS

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input/output Voltage	V _{I/O}		0		5.5	V
Reference Voltage	V _{REF_A/B/EN}		0		5.5	V
Pass transistor current	IPASS				64	mA
Operating Temperature	T _A		-40		+125	°C

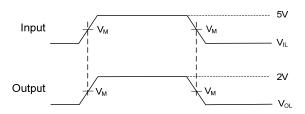
■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST COND	DITIONS	MIN	TYP	MAX	UNIT
Input clamp Voltage	Vıĸ	I _I =-18mA ,V _{EN} =0				-1.2	V
Input Leakage Current	I _{IH}	V _{IN} =5V , V _{EN} =0				5	μΑ
Quiescent Supply Current	Icc	V _{REF_B} =V _{EN} =5.5V, V _{REF_A} =4.5V or 1V, I _O =0, \					μΑ
Input Capacitance	CIN	V _I =3V or 0			11		pF
Off Capacitance	C _{IO(OFF)}	V _I =3V or 0, V _{EN} =0			7		pF
Capacitance When Switch Is Enabled	C _{IO(ON)}	V _I =3V or 0, V _{EN} =3V			16.5		pF
			V _{REF_A} =3.3V, V _{REF_B} =V _{EN} =5V		7		Ω
		V _I =0, I _O =64mA	V _{REF_A} =1.8V, V _{REF_B} =V _{EN} =5V		8		Ω
			V _{REF_A} =1.0V, V _{REF_B} =V _{EN} =5V		9		Ω
		V _i =0, I _o =32mA	V _{REF_A} =1.8V, V _{REF_B} =V _{EN} =5V		10		Ω
Switch On Resistance (Note 2)	Ron		V_{REF_A} =2.5V, V_{REF_B} = V_{EN} =5V		11		Ω
		V _I =1.8V, I _O =15mA	V_{REF_A} =3.3V, V_{REF_B} = V_{EN} =5V		8		Ω
		V _I =1V, I _O =10mA V _{REF_A} =1.8V, V _{REF_B} =V _{EN} =3.3V			12		Ω
		V _I =0, I _O =10mA	V _{REF_A} =1.0V, V _{REF_B} =V _{EN} =3.3V		14		Ω
		V _I =0, I _O =10mA	V_{REF_A} =1.0V, V_{REF_B} = V_{EN} =1.8V		16		Ω


Notes: 1. All typical values are at T_A=25°C.

2. Measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lowest voltage of the two (A or B) terminals.


■ SWITCHING CHARACTERISTICS


PARAMETER		SYMBOL	TEST CONDITION	IS	MIN	TYP	MAX	UNIT
			V _{REF_A} =2.3V, V _{REF_B} =3.3V,	C _L =50pF		1.7		ns
	Down		V _{IH} =3.3V, V _{IL} =0, V _M =1.15V	C _L =15pF		1.4		ns
	DOWII		V _{REF_A} =1.5V, V _{REF_B} =2.5V,	C _L =50pF		1.6		ns
Propagation Delay			V _{IH} =2.5V, V _{IL} =0, V _M =0.75V	C _L =15pF		1.5		ns
From Input (A or B)		t _{PLH}	V _{REF_A} =2.3V, V _{REF_B} =3.3V, V _{IH} =2.3V, V _{IL} =0, V _T =3.3V,	C _L =50pF		1.7		ns
to Output (B or A)			$V_{M}=1.15V, R_{L}=300\Omega$	C _L =15pF		1.6		ns
	Up		V_{REF_A} =1.5V, V_{REF_B} =2.5V, V_{IH} =2.5V, V_{IL} =0, V_{T} =2.5V, V_{M} =0.75V, R_{L} =300 Ω	C _L =50pF		2		ns
				C _L =15pF		1.9		ns
			V _{REF_A} =2.3V, V _{REF_B} =3.3V, V _{IH} =3.3V, V _{IL} =0, V _M =1.15V	C _L =50pF		7.7		ns
	Down			C _L =15pF		4.6		ns
	Down		V _{REF_A} =1.5V, V _{REF_B} =2.5V,	C _L =50pF		5.2		ns
Propagation Dolay			V _{IH} =2.5V, V _{IL} =0, V _M =0.75V	C _L =15pF		5.1		ns
Propagation Delay From Input (A or B)		t _{PHL}	V _{REF_A} =2.3V, V _{REF_B} =3.3V, V _{IH} =2.3V, V _{IL} =0, V _T =3.3V,	C _L =50pF		6.8		ns
to Output (B or A)	1.1		V_{M} =1.15V, R_{L} =300 Ω	C _L =15pF		6.5		ns
	Up		V _{REF_A} =1.5V, V _{REF_B} =2.5V, V _{IH} =2.5V, V _{IL} =0, V _T =2.5V,	C _L =50pF		5.3		ns
			V _M =0.75V, R _L =300Ω	C _L =15pF		5.2		ns

■ TEST CIRCUIT AND WAVEFORMS

USAGE	SWITCH
Translating Up	S1
Translating Down	S2

TRANSLATING UP

TRANSLATING DOWN

Notes: 1. C_L includes probe and jig capacitance.

- 2. All input pulses are supplied by generators having the following characteristics: $P_{RR} \le 10$ MHz, $Z_0 = 50\Omega$, $t_f \le 2$ ns, $t_f \le 2$ ns.
- 3. The outputs are measured one at a time, with one transition per measurement.

DEVICE FUNCTIONAL MODES

For each channel (n), when either the An or Bn port is LOW, the switch provides a low impedance path between the An and Bn ports; the corresponding Bn or An port will be pulled LOW. The low R_{ON} of the switch allows connections to be made with minimal propagation delay and signal distortion.

When the signal is being driven from A to B and the An port is HIGH, the switch will be OFF and the Bn port will then driven to a voltage higher than V_{REF_A} by the pullup resistor that is connected to the pull-up supply voltage ($V_{PU}\#$). This functionality allows seamless translation between higher and lower voltages selected by the user, without the need for directional control.

Refer to Function table for a summary of device operation. For additional details on the functional operation of the UTC **ULSF0101** family of devices, see the Down Translation with the UTC **ULSF0101** Family and Up Translation with the UTC **ULSF0101** Family videos.

Signal Direction (Note 1)	Input State	Switch State	Functionality	
	A=LOW	ON	B-side voltage is pulled low through the	
A TO D (Lin Translation)	A-LOVV	(Low Impedance)	switch to the A-side voltage	
A TO B (Up Translation)	A-111011	OFF	B-side voltage is clamped at V _{REF_A} and	
	A=HIGH		then pulled up to the V _{PU} # supply voltage	

Table 1. Device Functionality

Note: The downstream channel should not be actively driven through a low impedance driver, or else there may be bus contention.

■ TYPICAL APPLICATIONS

The UTC **ULSF0101** family has an EN input that is used to disable the device by setting EN LOW, placing all I/Os in the high-impedance state. Since the UTC **ULSF0101** family of devices are switch-type voltage translators, the power consumption is very low. UTC recommends always enabling the UTC **ULSF0101** family for bidirectional applications (I²C, SMBus, PMBus, or MDIO).

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Reference Voltage A (Note 1)	V_{REF_A}		0.95		4.5	V
Reference Voltage B	V_{REF_B}		V _{REF_A} +0.8		5.5	V
Input Voltage on EN Pin	V _{I(EN)}		V _{REF_A} +0.8		5.5	٧
Pull-Up Supply Voltage	V _{PU}		0		V _{REF_B}	V

Table 2. Application Operating Condition

Note: $V_{\mathsf{REF_A}}$ is required to be the lowest voltage level across all inputs and outputs.

The 200 k Ω , pull-up resistor is required to allow V_{REF_B} to regulate the EN input and properly bias the device for translation. A filter capacitor on V_{REF_B} is recommended. Also V_{REF_B} and $V_{I(EN)}$ are recommended to be 1.0V higher than V_{REF_B} for best signal integrity.

■ TYPICAL APPLICATIONS (Cont.)

Bidirectional Translation

For the bidirectional translation configuration (higher voltage to lower voltage or lower voltage to higher voltage), the EN input must be connected to V_{REF_B} and both pins must be pulled up to the HIGH side V_{PU} through a pull-up resistor (typically 200 k Ω). This allows V_{REF_B} to regulate the EN input and bias the channels for proper translation. A filter capacitor on V_{REF_B} is recommended for a stable supply at the device. The controller output driver can be push-pull or open-drain (pull-up resistors may be required) and the peripheral device output can be push-pull or open-drain (pull-up resistors are required to pull the Bn outputs to V_{PU}).

If either output is push-pull, data must be unidirectional or the outputs must be tri-state and be controlled by some direction-control mechanism to prevent HIGH-to-LOW bus contention in either

direction. If both outputs are open-drain, no direction control is needed.

When V_{REF_B} is connected through a 200k Ω resistor to a 3.3V V_{PU} power supply and V_{REF_A} is set 1.8 V, as shown in Figure 1, the A1 and A2 channels have a maximum output voltage equal to V_{REF_A} , and the B1 and B2 channels have has a maximum output voltage equal to V_{PU} .

Pull-up Resistor Sizing

The pull-up resistor value needs to limit the current through the pass transistor when it is in the ON state to about 15mA. This ensures a voltage drop of 260mV to 350mV to have a valid LOW signal on the downstream channel. If the current through the pass transistor is higher than 15mA, the voltage drop is also higher in the ON state. To set the current through each pass transistor at 15mA, calculate the pull-up resistor value using the following equation:

$$R_{PU} = (V_{PU} - 0.35V) / 0.015A (1)$$

Table 3 summarizes resistor values, reference voltages, and currents at 15mA, 10mA, and 3mA. The resistor value shown in the +10% column (or a larger value) should be used to ensure that the voltage drop across the transistor is 350 mV or less. The external driver must be able to sink the total current from the resistors on both sides of the UTC **ULSF0101** family device at 0.175V, although the 15mA applies only to current flowing through the UTC **ULSF0101** family device.

1/	\ 15r		101	10mA		ıA
V _{DPU} (Note1, 2)	NOMINAL(Ω)	+10%(Ω) (Note 3)	$NOMINAL(\Omega)$	+10%(Ω) (Note 3)	NOMINAL(Ω)	+10%(Ω) (Note 3)
5V	310	341	465	512	1550	1705
3.3V	197	217	295	325	983	1082
2.5V	143	158	215	237	717	788
1.8V	97	106	145	160	483	532
1.5V	77	85	115	127	383	422
1.2V	57	63	85	94	283	312

Table 3. Pull-up Resistor Values

Notes: 1. Calculated for V_{OL}=0.35V.

- Assumes output driver V_{OL}=0.175V at stated current.
- 3. +10% to compensate for V_{DD} range and resistor tolerance.

■ TYPICAL APPLICATION CIRCUIT

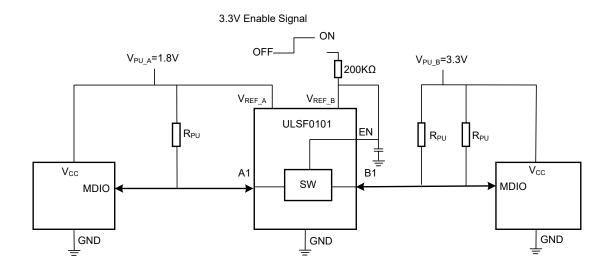


Figure 1. Typical Application Circuit for Open-Drain Translation (MDIO shown as an example)

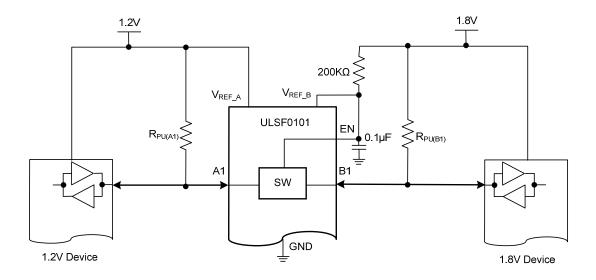


Figure 2. 1.2 to 1.8V Level Translation

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.