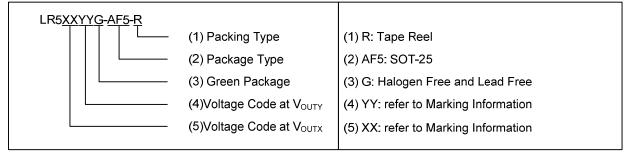

LR5XXYY Advance CMOS IC

150mA LOW-DROPOUT REGULATOR, ULTRALOW-POWER, IQ 500nA ,WITH PIN-SELECTABLE, DUAL-LEVEL OUTPUT VOLTAGE

DESCRIPTION

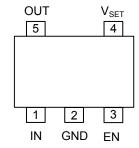
The V_{SET} pin allows the end user to switch between two voltage levels on-the-fly through a microprocessor-compatible input. This LDO is designed specifically for battery-powered applications where dual-level voltages are needed. With ultralow IQ (500nA), microprocessors, memory cards, and smoke detectors are ideal applications for this device.


■ FEATURES

- * Low IQ: 500 nA
- * 150mA, Low-Dropout Regulator With Pin-Selectable Dual Voltage Level Output
- * Low Dropout: 200 mV at 150mA
- * 3% Accuracy Over Load, Line, and Temperature
- * Available in Dual-Level, Fixed-Output Voltages From 1.5V to 4.2V
- * V_{SET} Pin Toggles Output Voltage Between Two Factory-Programmed Voltage Levels
- * Stable with a 1.0µF Ceramic Capacitor
- * Thermal Shutdown and Overcurrent Protection
- * CMOS Logic Level-Compatible Enable Pin

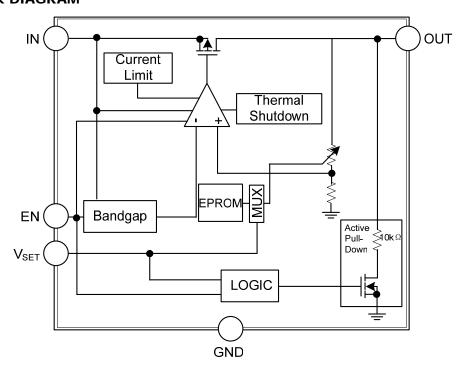
ORDERING INFORMATION

Ordering	Number	Doolsono	Packing	
Lead Free	Halogen Free	Package		
LR5XXYYL-AF5-R	LR5XXYYG-AF5-R	SOT-25	Tape Reel	


Note: XXYY: Output Voltage, refer to Marking Information.

■ MARKING INFORMATIONS

DACKACE	VOLTAG	SE CODE	MARKING
PACKAGE	XX	YY	<u>5</u> <u>4</u>
SOT-25	20: 2.0V	27: 2.7V	Voltage Code at V _{OUT1} SXXYY SXXYY Voltage Code at V _{OUT2} □ □ □ □ 1 2 3


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	IN	Input pin. A small capacitor is needed from this pin to ground to assure stability. Typical input capacitor=1.0µF
2	GND	Ground pin
3	EN	Driving the enable pin (EN) over 1.2V turns on the regulator. Driving this pin below 0.4V puts the regulator into shutdown mode.
4	V _{SET}	V_{SET} for fixed voltage versions. Driving the select pin (V_{SET}) below 0.4V selects preset output voltage high. Driving the V_{SET} pin over 1.2V selects preset output voltage low.
5	OUT	Regulated output voltage pin.

■ BLOCK DIAGRAM

Advance

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	6	V
Enable and _{VSET} Voltage Range, V _{EN} and V _{VSET}		V_{IN}	V
Output Voltage Range	V_{OUT}	V_{IN}	V
Output Current	I _{OUT}	150	mA
Operating Temperature	T _{OPR}	-40 ~ +125	°C
Storage Temperature	T _{STG}	-40 ~ +150	°C

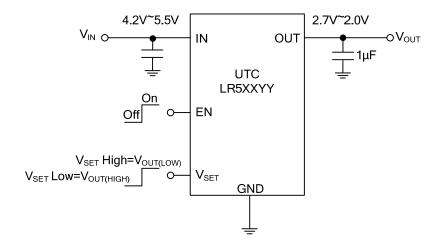
Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	270	°C/W
Junction to Case	θ_{JC}	90	°C/W

Note: Device mounted on PCB.


■ ELECTRICAL CHARACTERISTICS

 $(V_{IN}=V_{OUT}+0.5V, C_{IN}=C_{OUT}=1\mu F, T_A=25^{\circ}C, unless otherwise specified)$

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Voltage	V _{IN}		2.2		5.5	V
DC Output Accuracy	Acc	I _{OUT} =1mA	-2		2	%
Dropout Voltage	V_{DIF}	I _{OUT} =150mA, V _{OUT} =2.2V		200	250	mV
Supply Current	I _{IN}	I _{OUT} =0mA		0.5	8.0	μA
Shutdown Current	I _{SHDN}	V _{EN} =0V, 2.2V≤V _{IN} <5.5V		18	130	nA
Load Regulation	ΔV_{OUT}	1mA ≤I _{OUT} ≤100mA		10		mV
Line Regulation	ΔV_{OUT} $V_{OUT} \Delta V_{IN}$	I_{OUT} =10mA V_{OUT} +0.5V \leq V _{IN} \leq 5.5V		0.2	0.35	%/V
Output Current Limit	I _{LIM}	$V_{OUT} = 0.9 \times V_{OUT(nom)}$	150	230	400	mA
V _{SET} high (output V _{OUT(LOW)} selected), or EN high (enabled)	V _{HI}		1.2		V _{IN}	V
V _{SET} low (output V _{OUT(HIGH)} selected), or EN low (disabled)	V_{LO}		0		0.4	٧
V _{SET} Pin Current	I _{VSET}	$V_{EN} = V_{VSET} = 5.5V$			70	nA
EN Pin Current	I _{EN}	$V_{EN} = V_{VSET} = 5.5V$			40	nA

^{2.} Device mounted on PCB.

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.