

Preliminary

CMOS IC

HIGH-SPEED USB 2.0 (480-MBPS) 1:2 MULTIPLEXER/DEMULTIPLEXER SWITCH

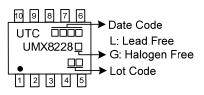
DESCRIPTION

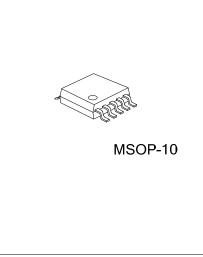
The UTC **UMX8228** is a high-speed, low-power double-pole/double-throw (DPDT) analog switch with single Enable. It is designed to operate from 1.8V to 5.5V.

The UTC **UMX8228** has a bus-switch enable pin, $\overline{\text{OE}}$, that can place the signal paths in high impedance. This allows the user to isolate the bus when it is not in use and consume less current.

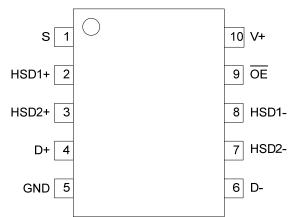
The UTC **UMX8228** is a high-bandwidth switch specially designed for the switching of high-speed USB2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os.

FEATURES


- * Supply Range: 1.8V ~ 5.5V
- * -3dB Bandwidth: 550MHz
- * R_{ON} is Typically 6Ω
- * Low Power Consumption (1µA Maximum)
- * Break-Before-Make Switching
- * Rail-to-Rail Input and Output Operation
- * Extended Industrial Temperature Range: -40°C ~ +85°C

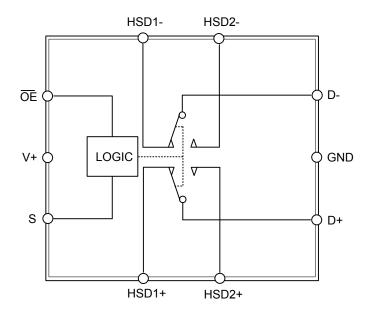

ORDERING INFORMATION

Ordering	Number	Deekeen	Dealing
Lead Free	Halogen Free	Package	Packing
UMX8228L-SM2-R	UMX8228G-SM2-R	MSOP-10	Tape Reel

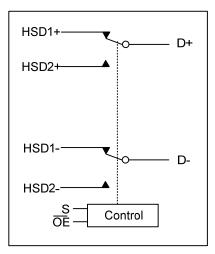

(2)Package Type	 (1) R: Tape Reel (2) SM2: MSOP-10 (3) G: Halogen Free and Lead Free, L: Lead Free
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

■ PIN CONFIGURATION



■ PIN DESCRIPTION


PIN NO.	PIN NAME	DESCRIPTION
1	S	Select Input
2	HSD1+	Data Port
3	HSD2+	Data Port
4	D+	Data Port
5	GND	Ground
6	D-	Data Port
7	HSD2-	Data Port
8	HSD1-	Data Port
9	OE	Output Enable
10	V+	Power Supply

BLOCK DIAGRAM

■ FUNCTIONAL BLOCK DIAGRAM

FUNCTION TABLE

OE	S	HSD1+, HSD1-	HSD2+, HSD2-
L	L	ON	OFF
L	Н	OFF	ON
Н	Х	OFF	OFF

Note: H: High voltage level, L: Low voltage level, X =Don't care.

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V _{CC}	0~6	V
Input Voltage	V _{IN}	-0.3 ~ (V+)+0.3	V
Continuous Current HSDn or Dn		±100	mA
Peak Current HSDn or Dn		±150	mA
Junction Temperature	TJ	+150	°C
Operating Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ +150	°C

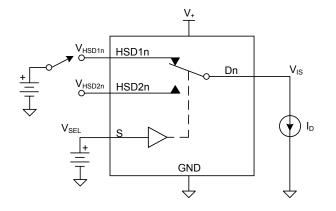
Notes: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING COMDITIONS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	Vcc		1.8		5.5	V
Control Input Voltage (S, OE)	VIN		0		Vcc	V
Switch I/O Voltage	V _{SW}		-0.5		5.5	V
Operating Temperature	TA		-40		+85	°C

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input High Voltage	VIH		1.6			V
Input Low Voltage	VIL				0.4	V
On-Resistance	R _{ON}	V+ =3.0V, V _{IS} =0V~0.4V,I _D =8mA Figure 1		7	10	Ω
On-Resistance Match Between Channels	ΔR_{ON}	V+=3.0V, V _{IS} =0V~0.4V, I _D =8mA Figure 1		0.25	0.6	Ω
On-Resistance Flatness	R _{FLAT(ON)}	V+ =3.0V, V _{IS} =0V~1.0V, I _D =8mA Figure 1		4	7	Ω
Power Off Leakage Current (All I/O Ports)	I _{OFF}	$V_{+} = 0V, V_{D} = 0V \sim 3.6V,$ $V_{S}, V_{\overline{OE}} = 0V \text{ or } 3.6V$			300	μA
Quiescent Supply Current	I _{CC}	V+=3.6V, V _S or $V_{\overline{OE}}$ = 0 or 3.6V, I _{OUT} =0V			1	μA
Increase in I_{CC} per Control Voltage V_{CC}	I _{CCT}	V+ =3.6V, V _S or V _{\overline{OE}} = 2.6V			40	μA
Source Off Leakage Current		V+ =3.6V, V _{IS} =3.3V/ 0.3V, V _D = 0.3V/ 3.3V			1	μA
Channel On Leakage Current		V+ =3.6V, V _{IS} =3.3V/ 0.3V, V _D = 0.3V/ 3.3V or Floating			1	μA
Input Leakage Current	I _{IN}	V+ =3.0V, V _S , $V_{\overline{OE}}$ =0V or V+			1	μA
DYNAMIC CHARACTERISTICS						
Turn-On Time	t _{ON}	V _{IS} =0.8V, R _L =50Ω, C _L =10pF,		27		ns
Turn-Off Time	t _{OFF}	Figure 2		28		ns
Break-Before-Make Time Delay	t _D	V_{IS} =0.8V, R _L =50Ω, C _L =10pF, Figure 3		9		ns
Propagation Delay	t _{PD}	R _L =50Ω, C _L =10pF		0.35		ns
Off Isolation	O _{IRR}	Signal =0dBm, R _L =50Ω, f=250MHz, Figure 4		-30		dB
Channel-to-Channel Crosstalk	X _{TALK}	Signal =0dBm, R _L =50Ω, f=250MHz, Figure 5		-40		dB
-3dB Bandwidth	BW	Signal =0dBm, R_L =50 Ω , C_L =5pF, Figure 6		550		MHz


■ ELECTRICAL CHARACTERISTICS (Cont.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Control Pin Input Capacitance	CIN	V _{CC} =0V		5		pF
D+/D- On Capacitance	CON	V_{CC} =3.3V, \overline{OE} =0V, f=1MHz, Figure 8		20		pF
D1n, O2n off Capacitance	C_{OFF}	V_{CC} and \overline{OE} =3.3V, Figure 9		7		pF

Note: All unused digital inputs of the device must be held at V_{IO} or GND to ensure proper device operation.

TEST CIRCUIT

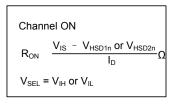


Figure 1. ON-State Resistance (R_{ON})

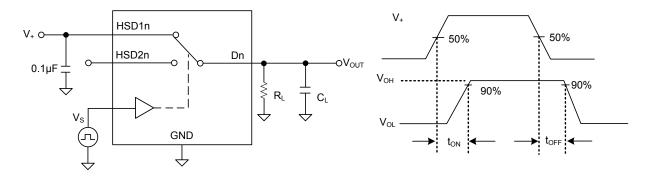


Figure 2. Turn-On (t_{ON}) and Turn-Off Time (t_{OFF})

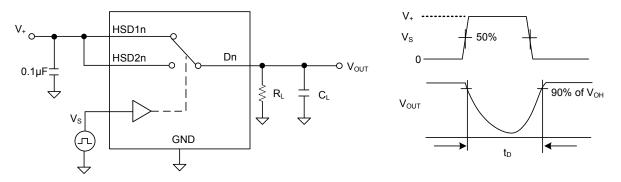
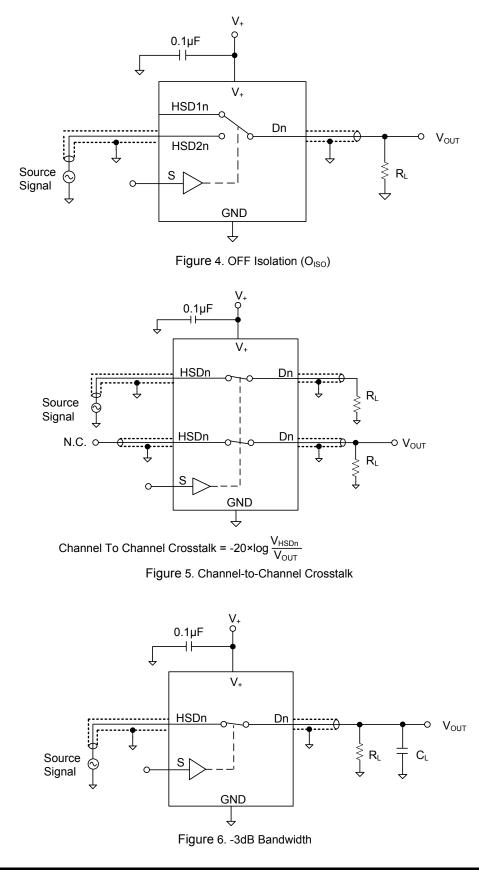



Figure 3. Break-Before-Make Time (t_D)

■ TEST CIRCUIT (Cont.)

■ TEST CIRCUIT (Cont.)

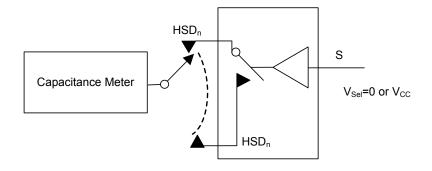


Figure 7. Channel Off Capacitance

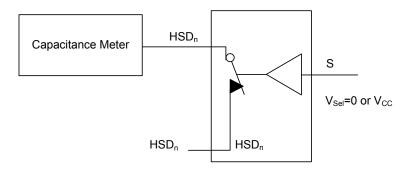
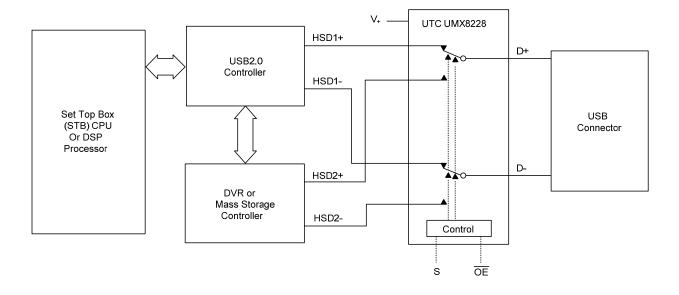



Figure 8. Channel On Capacitance

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

