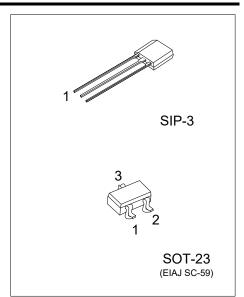


UNISONIC TECHNOLOGIES CO., LTD

UHC288C Preliminary CMOS IC

HIGH VOLTAGE BUITLT-IN **PULL HIGH RES OMNIPOLAR** HALL EFFECT SWITCH

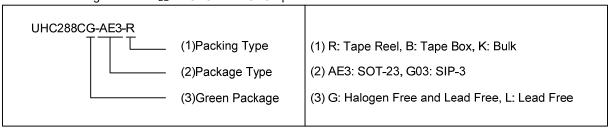

DESCRIPTION

UTC UHC288C Hall effect switch is a temperature stable, Superior high-temperature performance is made possible through a dynamic offset cancellation that utilizes chopper-stabilization.

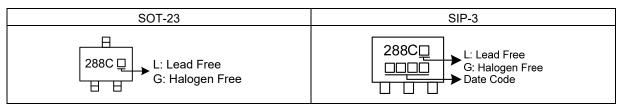
UTC UHC288C includes an on-chip Hall voltage generator for magnetic sensing, a comparator that amplifies the Hall voltage, and a Schmitt trigger to provide switching hysteresis for noise rejection, and built-in pull high resistance output.

This device requires the presence of omni-polar magnetic fields for operation.

The package type is in a Halogen Free version was verified by third party Lab.


FEATURES

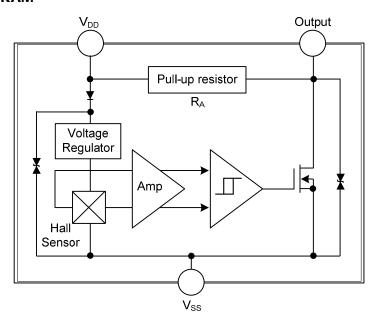
- * Operation range from 3.0V to 26V
- * Omni polar, output switches with absolute value of North or South pole from magnet
- * Reverse bias protection on power supply pin
- * High Sensitivity for reed switch replacement applications
- * Low sensitivity drift in crossing of Temp range


ORDERING INFORMATION

Ordering	Daalsana	Pin Assignment			Da akin n		
Lead Free	Halogen Free	Package	1	2	3	Packing	
UHC288CL-AE3-R	UHC288CG-AE3-R	SOT-23	-	0	G	Tape Reel	
UHC288CL-G03-B	UHC288CG-G03-B	SIP-3	-	G	0	Tape Box	
UHC288CL-G03-K	UHC288CG-G03-K	SIP-3	ı	G	0	Bulk	

Note: Pin Assignment: I: V_{DD} G: GND O: Output

MARKING



www.unisonic.com.tw 1 of 5

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V_{DD}	Supply voltage
2	GND	Ground
3	Output	Output voltage

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V_{DD}	28	V
Output Voltage		V _{OUT}	28	V
Reverse Voltage		V _{DD} / V _{OUT}	-28 / -0.3	V
D D: : ::	SOT-23	200		mW
Power Dissipation	SIP-3	P _D	400	mW
Output Current		I _{SINK}	25	mA
Operating Temperature Range		T _A	-40 ~ +85	°C
Junction Temperature		TJ	+125	°C
Storage Temperature Range		T _{STG}	-55 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS

(DC Operating Parameters V_{DD}=12V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage	V_{DD}	Operating	3.0		26	V
Supply Current	I _{DD}	B <bop< td=""><td></td><td>2.5</td><td>5.0</td><td>mA</td></bop<>		2.5	5.0	mA
Output Saturation Voltage	V _{DSON}	lout=20mA,B>BOP		300	550	mV
Output Leakage Current	loff	I _{OFF} B <b<sub>RP, V_{OUT} = 20V</b<sub>			10	uA
Output Switch Frequency	Fsw		3			kHz
Pull-up Resistor	RA			10		ΚΩ

■ MAGNETIC CHARACTERISTICS (V_{DD}=12V, T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
Onesete Deint DODC	J	B>B _{OPS} (B <b<sub>OPN), V_{OUT} On</b<sub>	255	395	540	Causa	
Operate Point, BOPS	B _{OPN}		(-540)	(-395)	(-255)	Gauss	
Release Point, BRPS	B _{RPN}	B <b<sub>RPS(B>B_{RPN}), V_{OUT} Off</b<sub>	230	355	490	Causa	
			(-490)	(-355)	(-230)	Gauss	
Hysteresis	B _{HYS}	BOP - BRP		40		Gauss	

Note: 1. Note: 1mT=10 Gauss.

^{2.} The magnetic pole is applied facing the branded side of the SIP-3 package.

■ CHYSTERESIS CHARACTERISTICS

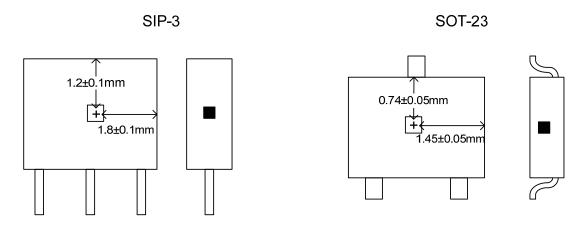
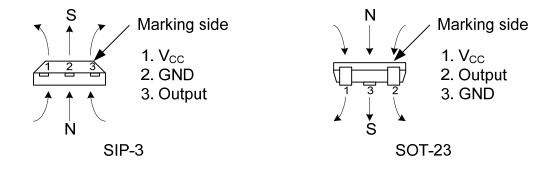
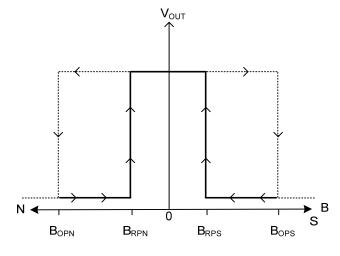
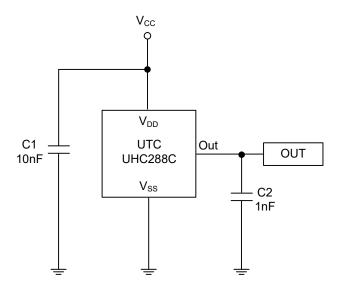




Fig. 1 SENSOR LOCATIONS



Magnetic flux density

Fig. 2 APPLYING DIRECTION OF MAGNETIC FLUX

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.