
UNISONIC TECHNOLOGIES CO., LTD

UCL5108 Advance **CMOS IC**

I FD DRIVFR WITH AVERAGE-MODE CONSTANT CURRENT CONTROL

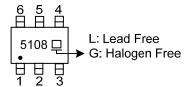
DESCRIPTION

The UCL5108 is an average current mode control LED driver IC operating in a constant off-time mode. UCL5108 does not produce a peak-to-average error, and therefore greatly improves accuracy,line and load regulation of the LED current without any need for loop compensation or high-side current sensing. The output LED current accuracy is ±2%. The UCL5108 can be powered from an 8.0 - 100V supply. PWM & Linear dimming input is provided that accepts an external control TTL compatible signal. The output current can be programmed by an internal 250mV reference.

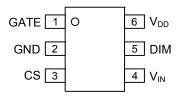
FEATURES

- * Fast Average Current Control
- * Internal 8 to 100V Linear Regulator
- * Linear and PWM Dimming Capability
- * Output Short Circuit Protection with Skip Mode
- * Requires Few External Components for Operation

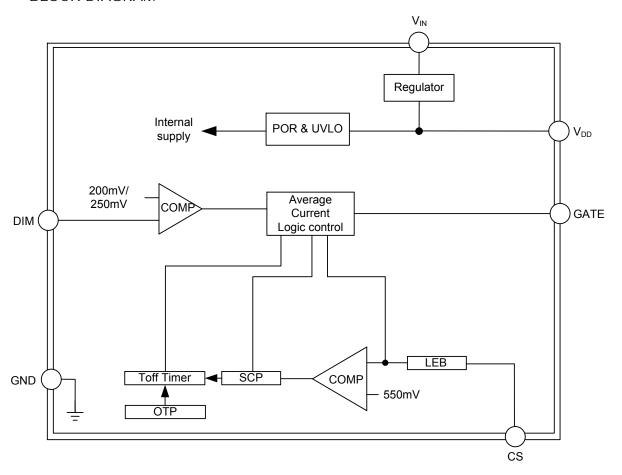
APPLICATIONS


- * DC/DC or AC/DC LED Driver Applications
- * LED Street Lighting
- * Back Lighting of Flat Panel Displays
- * General Purpose Constant Current Source
- * Signage and Decorative LED Lighting
- * Chargers

ORDERING INFORMATION


Order	ng Number	Dooksass	Packing	
Lead Free	Halogen Free	Package		
UCL5108L-AG6-R	UCL5108G-AG6-R	SOT-26	Tape Reel	

■ MARKING

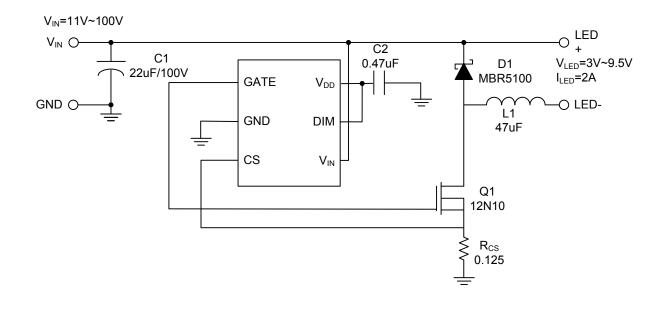

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION		
1	GATE	This pin is the output GATE driver for an external N-channel		
2	GND	Ground return for all internal circuitry		
3	CS	Sense the FET current by means of an external sense resistor		
4	V_{IN}	This pin is the input of an 8 - 100V linear regulator		
5	DIM	This pin is the linear & PWM dimming input of the IC		
6	V_{DD}	This is the power supply pin for all internal circuits		

■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=27°C, unless otherwise specified)


PARAMETER	SYMBOL	RATINGS	UNIT	
Power Supply Voltage	V_{IN}	100	V	
Junction Temperature	TJ	+150	°C	
Storage Temperature	T _{STG}	-65 ~ +150	°C	

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (V_{DD}=3.3V, T_A=25°C, unless otherwise specified)

<u></u>	1	1	1				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT	
INTERNAL REGULATOR	1		-	1	-		
Internally Regulated Voltage	V_{DD}	V _{IN} =8V, I _{DD(ext)} =0, 500pF at GATE, DIM=V _{DD}	7.25	7.5	7.75	٧	
Line Regulation of V _{DD}	$\Delta V_{\text{DD,line}}$	V _{IN} =8~100V, I _{DD(ext)} =0, 500pF at GATE, DIM=V _{DD}	0	-	1.0	٧	
Load Regulation of V _{DD}	$\Delta V_{DD,load}$	I _{DD(ext)} =0~0.6mA, 500pF at GATE, DIM=V _{DD}	0	ı	100	mV	
V _{DD} Under Voltage Lockout Threshold	UVLO	V _{DD} rising		6.3		V	
V _{DD} Under Voltage Lockout Hysteresis	ΔUVLO	V _{DD} falling		500		mV	
PWM DIMMING							
Pin DIM input low voltage	V _{EN(lo)}	V _{IN} =8~100V			0.1	V	
Pin DIM input high voltage	V _{EN(hi)}	V _{IN} =8~100V	1.6			V	
AVERAGE CURRENT SENSE LOGIC							
Current Sense Reference Voltage	V _{CS}		243	250	257	mV	
DIM-to-CS Voltage Ratio	$A_{V(DIM)}$			0.167			
DIM-to-CS Voltage Offset	A _{V(DIM)} (OFFSET)		0		10	mV	
CS Threshold Temp Regulation					5	mV	
DIM Input Voltage, Shutdown	$V_{\text{DIM(OFF)}}$			200		mV	
DIM Input Voltage, Enable	$\Delta V_{DIM(OFF)}$			250		mV	
Current Sense Blanking Interval	T _{BLANK}		150		320	ns	
Minimum Steady-State Duty Cycle	T _{ON(min)}				1000	ns	
SHORT CIRCUIT PROTECTION							
Hiccup Threshold voltage	V_{CS}		495	550	605	mV	
Current Limit Delay CS-GATE	T _{DELAY}	CS=V _{CS} + 30mV			150	ns	
Short Circuit Hiccup Time	T _{HICCUP}		450	550	650	us	
Minimum On-Time (Short Circuit)	T _{ON(min)}	CS=V _{DD}			600	ns	
GATE DRIVER							
GATE Sourcing Current	ISOURCE	VGATE=0V, V _{DD} =7.5V	165			mΑ	
GATE Sinking Current	ISINK	VGATE=V _{DD} , V _{DD} =7.5V	165			mΑ	
GATE Output Rise Time	tRISE	CGATE=500pF, V _{DD} =7.5V		30	50	ns	
GATE Output Fall Time	tFALL	CGATE=500pF, V _{DD} =7.5V		30	50	ns	
OFF-TIME							
Minimum Off Time	t _{OFF Min}			0.6		us	
Maximum Off Time	t _{OFF Max}			50		us	

■ TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.