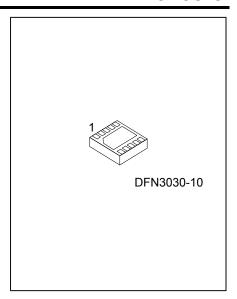


UNISONIC TECHNOLOGIES CO., LTD


UMD9128 Advance CMOS IC

DC TAIL ROTOR MOTOR, STEERING GEAR MOTOR DRIVE CIRCUIT

DESCRIPTION

UTC **UMD9128** is an integrated brush DC motor drive solution for battery-powered toys, low-voltage or battery-powered motion control applications. It has H bridge driver and uses the PMOS and NMOS power transistors with low output resistance. Low on-resistance ensures the circuit to consume lower power in operating at a continuous current, and ensures the circuit to operate stably for a long time. The circuit has a wide working voltage range from 2.5V to 5V. The maximum continuous output current reaches 0.5A, and the maximum peak output current can be 0.8A when $V_{\rm DD}$ is 4V.

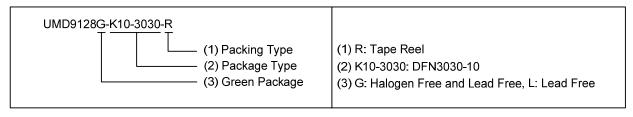
UTC **UMD9128** has on-chip temperature protection function. When load motor with low internal resistance is in locked rotor, UTC **UMD9128** output current will increase momentarily, power dissipation of the circuit will go up sharply, and the chip temperature will soar. But, when the chip temperature exceeds a maximum temperature point (typically 160°C) set by internal temperature protection circuit, the internal circuit will switch off the on-chip power switching transistor of UTC **UMD9128**, and switch off load current, preventing potential safety hazards such as fuming, igniting of plastic package caused by over temperature etc. Only after having confirmed that the circuit has returned to safety temperature, the on-chip temperature hysteresis circuit can be allowed to re-control the circuit.

■ FEATURES

- * Low standby current (0.1µA typ.)
- * PMOS and NMOS power transistors with low output resistance

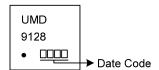
If I_O is 100mA, R_{ON} of power transistor is 1.5 Ω If I_O is 200mA, R_{ON} of power transistor is 1.6 Ω If I_O is 300mA, R_{ON} of power transistor is 1.7 Ω

- * Built-in Subsequent stream diode
- -No external diode required
- * Low input current

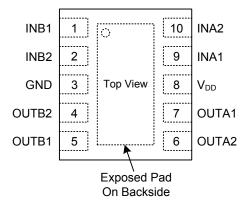

Pull-down resistance is 1.8MΩ typical

2.0uA input current when input voltage is 3V

On-chip thermal shut down (TSD) with hysteresis

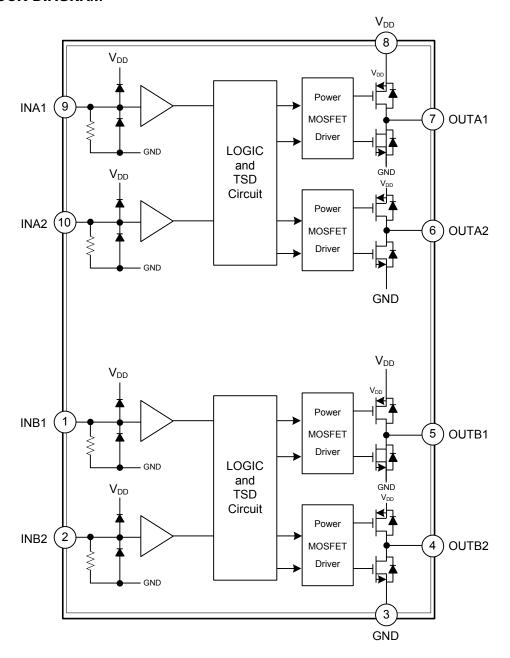

■ ORDERING INFORMATION

Ordering	g Number	Daakaaa	Dealing	
Lead Free	Halogen Free	Package	Packing	
UMD9128L-K10-3030-R	UMD9128G-K10-3030-R	DFN3030-10	Tape Reel	



<u>www.unisonic.com.tw</u> 1 of 6

■ MARKING


■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	INB1	B channel Forward Control Input Pin
2	INB2	B channel Reverse Control Input Pin
3	GND	Ground
4	OUTB2	B channel Reverse Drive Output Pin
5	OUTB1	B channel Forward Drive Output Pin
6	OUTA2	A channel Reverse Drive Output Pin
7	OUTA1	A channel Forward Drive Output Pin
8	V_{DD}	Supply Voltage
9	INA1	A channel Forward Control Input Pin
10	INA2	A channel Reverse Control Input Pin

■ BLOCK DIAGRAM

■ LOGIC TRUTH TABLE

INA1/INB1	INA2/INB2	OUTA1/OUTB1	OUTA2/OUTB2	FUNCTION
L	L	Z	Z	Standby (Stop)
Н	L	Н	L	Forward rotation
L	Н	L	Н	Backward rotation
Н	Н	L	L	Brake

■ **ABSOLUTE MAXIMUM RATING** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Maximum Supply Voltage	V_{DD}	5.5	>
Maximum External Output Voltage	V_{OUT}	V_{DD}	>
Maximum External Input Voltage	V_{IN}	V_{DD}	>
Peak Output Current/Channel	I _{OUT PEAK}	0.85	Α
Maximum Continuous Output current	I _{OUT}	0.6	Α
Maximum Power Dissipation	P_{D}	1.05 (Note)	W
Junction Temperature	T_J	+150	°C
Operational Temperature Range	T_OPR	-20 ~ +85	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged.

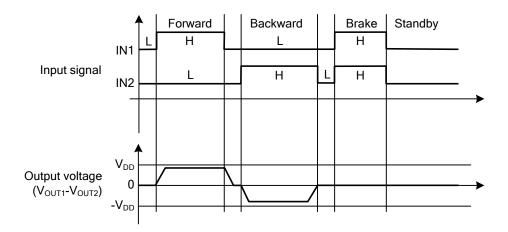
Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	119	°C/W

Note: The data tested by surface mounted on a 2 inch2 FR-4 board with 2OZ copper.

■ RECOMMENDED OPERATIONAL CONDITIONS (T_A=25°C, unless otherwise specified)

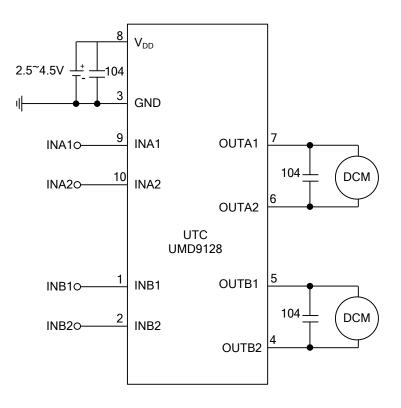

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
Supply Voltage	V_{DD}	2.5		5	V
Input Voltage	V_{IN}	0		V_{DD}	V
Output current from OUT1 to OUT2 when V _{DD} =4.5V	I _{oc}		300	550	mA

■ **ELECTRICAL CHARACTERISTICS** (V_{DD}=3V, T_A=25°C, unless otherwise stated)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
The Power Supply Parameters								
VDD Ctondby Coment	I _{VDDST}	IN1=IN2=L, V _{DD} =5.5V,						
VDD Standby Current		Output opened			4	μA		
VDD Static Supply Current	I _{VDD}	IN1=H or IN2=H; Output opened		100		μA		
Input Logic Level	_							
Input High Level	V_{INH}	V _{DD} =3V	$0.7 \times V_{DD}$			V		
Input Low Level	V_{INL}	V _{DD} =3V			$0.2 \times V_{DD}$	V		
Input High Level Current	I _{INH}	V _{INH} =3V, V _{DD} =3V		2.0		μΑ		
Input the Pull-Down Resistor	R_{IN}	V _{INH} =3V, V _{DD} =3V		1.8		МΩ		
The Power Tube Leads to Interna	The Power Tube Leads to Internal Resistance							
		I _O =±100mA, V _{DD} =3V		1.5		Ω		
Output Resistance	R _{ON}	I_O =±200mA, V_{DD} =3V		1.6		Ω		
		I_O =±300mA, V_{DD} =3V		1.7		Ω		
Protection Function Parameters								
Protection Temperature	TSD			160		°C		
TSD Hysteresis	TSDH			20		°C		

^{2.} The data tested by surface mounted on a 2 inch2 FR-4 board with 2OZ copper.

■ TYPICAL WAVEFORM



■ APPLICATION INFORMATION

Thermal shut down (TSD)

When Junction Temperature reaches 160°C, the internal circuit will switch off the on-chip power switching transistor of UTC **UMD9128**, preventing potential safety hazards caused by over temperature. The temperature hysteresis of TSD is 20°C typical.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.