

UNISONIC TECHNOLOGIES CO., LTD

ULN2068B

Advance

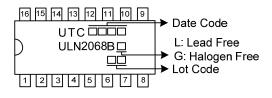
LINEAR INTEGRATED CIRCUIT

50V, 1.5A QUAD DARLINGTON SWITCHES

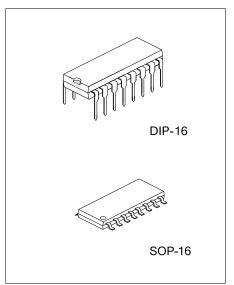
DESCRIPTION

Designed to interface logic to a wide variety of high current, high voltage loads, this device contains four NPN Darlington switches delivering up to 1.5A with a specified minimum breakdown of 50V and a sustaining voltage of 35V measured at 100mA. The UTC **ULN2068B** contains integral suppression diodes for inductive loads have common emitters. The UTC **ULN2068B** is compatible with popular 5V logic families. The UTC **ULN2068B** includes a pre-driver stage to reduce loading on the control logic.

FEATURES

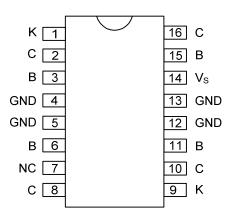

- * Output current to 1.5A for each Darlington
- * Sustaining voltage at least 35V
- * Minimum breakdown 50V
- * Integral suppression diodes
- * Versions compatible with all popular logic families

ORDERING INFORMATION


Ordering	Number	Deelvere	Packing	
Lead Free	Halogen Free	Package		
ULN2068BL-D16-T	ULN2068BG-D16-T	DIP-16	Tube	
ULN2068BL-S16-R	ULN2068BG-S16-R	SOP-16	Tape Reel	

ULN2068BG-D16-T	
T T (1)Packing Type	(1) T: Tube, R: Tape Reel
(2)Package Type	(2) D16: DIP-16, S16: SOP-16
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

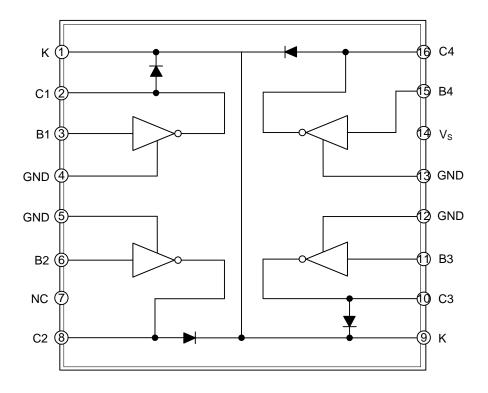
MARKING



ULN2068B

Advance

LINEAR INTEGRATED CIRCUIT


■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1, 9	К	Clamp diode
2, 8, 10, 16	С	Output
3, 6, 11, 15	В	Input
4, 5, 12, 13	GND	Ground
7	NC	Not connected
14	Vs	Power supply

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT	
Output Voltage		V _{CEX}	50	V	
Output Sustaining Voltage		V _{CE(SUS)}	35	V	
Output Current		lo	1.75	А	
Input Voltage		VI	15	V	
Input Current		l _l	25	mA	
Supply Voltage		Vs	10	V	
Power Dissipation	DIP-16	PD	1.47	W	
	SOP-16		1.25 (Note 2)	W	
Operating Ambient Temperature Range		T _{AMB}	-20 ~ +85	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. On PCB (Test Board: JEDEC 2s2p)

■ ELECTRICAL CHARACTERISTICS (T_A=25°C unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Output Leakage Current	I _{CEX}	V _{CE} =50V, T _A =25°C			100	μA
Collector-Emitter Sustaining Voltage	V _{CE(SUS)}	I _C =100mA, V _I = 0.4V	35			V
Collector-Emitter Saturation Voltage	V _{CE(SAT)}	I _C =500mA, I _B =325μA			1.1	V
		I _C = 750mA, I _B = 935μA			1.2	V
		I _C =1A, I _B =1.25mA			1.3	V
		I _C =1.25A, I _B = 2mA			1.4	V
Input Current	I _{I(ON)}	V ₁ =2.75V			0.55	mA
		V ₁ =3.75V			1.0	mA
Input Voltage	V _{I(ON)}	V _{CE} = 2V, I _C =1.5A			3.0	V
Supply Current	ls	V _I = 2.75V, I _C = 500mA			6	mA
Turn-On Delay Time	t _{PLH}	0.5 V_{I} to 0.5 V_{O}			1	μs
Turn-Off Delay Time	t _{PHL}	0.5 V _I to 0.5 V _O		2.5		μs
Clamp Diode Leakage Current	I _R	V _R =50V, T _A =25°C			50	μA
Clamp Diode Forward Voltage	V _F	I _F =1A			1.75	V
		I _F =1.5A			2	V

ULN2068B

TEST CIRCUIT

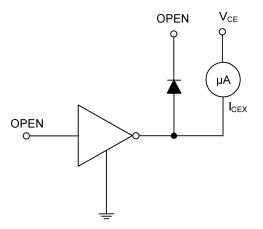


Figure 1. Output leakage current

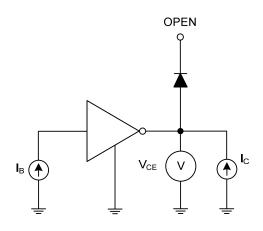


Figure 3. Collector-emitter saturation voltage

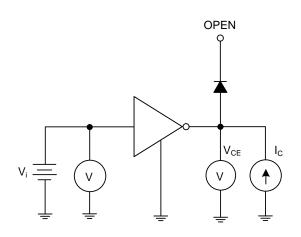


Figure 5. Input voltage

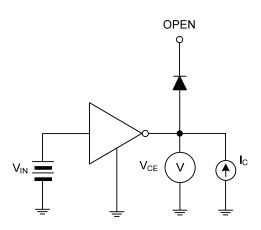


Figure 2. Collector-emitter sustaining voltage

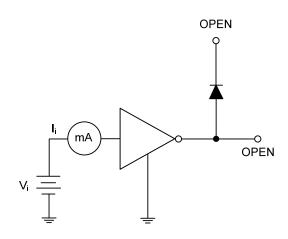
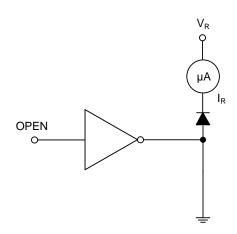
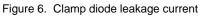




Figure 4. Input current (ON)

ULN2068B

TEST CIRCUIT (Cont.)

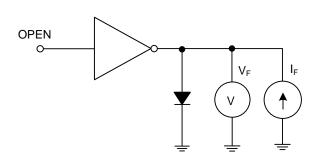


Figure 7. Clamp diode forward voltage

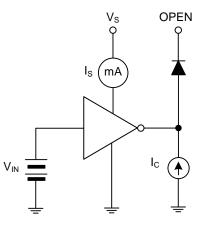
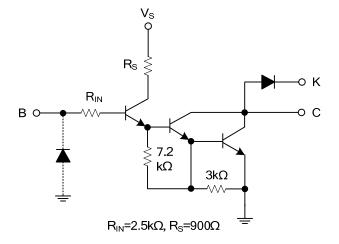



Figure 8. Supply current

■ SCHEMATIC DIAGRAMS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

