

UNISONIC TECHNOLOGIES CO., LTD

UTXS0102

Preliminary

2-BIT BIDIRECTIONAL VOLTAGE-LEVEL TRANSLATOR FOR OPEN-DRAIN AND PUSH-PULL APPLICATION

SOP-8 MSOP-8

DESCRIPTION

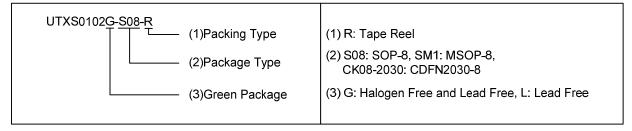
This 2-bit non-inverting translator is a bidirectional voltage-level translator and can be used to establish digital switching compatibility between mixed-voltage systems. It uses two separate configurable power supply rails, with the A ports supporting operating voltages from 1.65V to 3.6V while it tracks the V_{CCA} supply, and the B ports supporting operating voltages from 2.3V to 5.5V while it tracks the V_{CCB} supply.

This allows the support of both lower and higher logic signal levels while providing bidirectional translation capabilities between any of the 1.8V, 2.5V, 3.3V, and 5V voltage nodes.

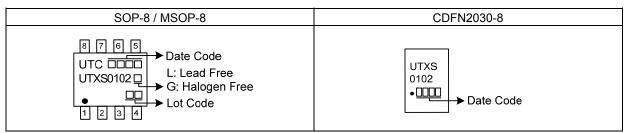
When the output-enable (OE) input is low, all I/Os are placed in the high-impedance state, which significantly reduces the power-supply quiescent current consumption.

To ensure the high-impedance state during power-up or power -down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

FEATURES

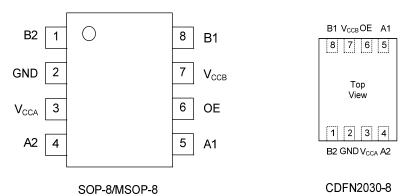

- * 1.65V to 3.6V on A Port and 2.3V to 5.5V on B Port (V_{CCA} \leq V_{CCB})
- * No Direction-Control Signal Needed
- * No Power-Supply Sequencing Required Either V_{CCA} or V_{CCB} Can be Ramped First
- * IOFF Supports Partial-Power-Down Mode Operation

APPLICATION


- * Handset
- * Smartphone
- * Tablet
- * Desktop PC

ORDERING INFORMATION

Ordering	Number	Daakaga	Decking
Lead Free	Halogen Free	Package	Packing
UTXS0102L-S08-R	UTXS0102G-S08-R	SOP-8	Tape Reel
UTXS0102L-SM1-R	UTXS0102G-SM1-R	MSOP-8	Tape Reel
UTXS0102L-CK08-2030-R	UTXS0102G-CK08-2030-R	CDFN2030-8	Tape Reel



MARKING

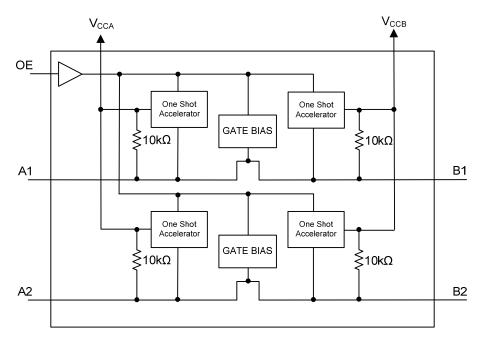
■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	DESCRIPTION	
1	B2	I/O	Input/output B2. Referenced to V _{CCB}	
2	GND		Ground	
3	V _{CCA}		A-Port supply voltage $1.65V \le V_{CCA} \le 3.6V$, $V_{CCA} \le V_{CCB}$	
4	A2	I/O	Input/output A2. Referenced to V _{CCA}	
5	A1	I/O	Input/output A1. Referenced to V _{CCA}	
6	OE	Ι	3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA}	
7	V _{CCB}		B-Port supply voltage $2.3V \le V_{CCB} \le 5.5V$	
8	B1	I/O	Input/output B1. Referenced to V _{CCB}	

Note: I=Input, O=Output, I/O=Input and Output.

FUNCTION TABLE


SUPPLY VOLTAGE		INPUT	INPUT/0	DUTPUT
V _{CCA}	V _{CCB}	OE	An	Bn
1.65V ~ V _{CCB}	2.3V ~ 5.5V	L	Z	Z
1.65V ~ V _{CCB}	2.3V ~ 5.5V	Н	Input or Output	Output or Input
GND	GND	Х	Z	Z

Notes: 1. H = High voltage level ; L = Low voltage level ; X = Don't care ; Z = high-impedance OFF-state

2. When either V_{CCA} or V_{CCB} is at GND level, the device goes into power-down mode.

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CCA}	-0.5 ~ 4.6	V
Supply Voltage		V _{CCB}	-0.5 ~ 6.5	V
Input Voltage	A Port	V	-0.5 ~ 4.6	V
	B Port	V _{IN}	-0.5 ~ 6.5	V
Voltage Range Applied to Any	A Port		-0.5 ~ 4.6	V
Output In the High-Impedance or Power-Off State	B Port	V _{OUT}	-0.5 ~ 6.5	V
Voltage Range Applied to Any	A Port	M	-0.5 ~ V _{CCA} +0.5	V
Output In the High or Low State	B Port	V _{OUT}	-0.5 ~ V _{CCB} +0.5	V
Input Clamp Current	V _{IN} <0	I _{IK}	-50	mA
Output Clamp Current V _{OUT} <0		Ι _{ΟΚ}	-50	mA
Continuous Output Current		I _{OUT}	±50	mA
Continuous Current Through V _{CCA} ,	V _{CCB} , or GND	I _{CC} / I _{GND}	±100	mA
Storage Temperature		T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS (T_A=25°C, unless otherwise specified)

PARAMETER	२	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Supply Voltage (Note 3)		V _{CCA}		1.65		3.6	V		
Supply Voltage (Note 3)		V _{CCB}		2.3		5.5	V		
Input Voltage		V _{IN}		0		V _{CCI}	V		
Output Voltage	A Port I/Os	Maxa	V _{CCA} =1.65V~3.6V,	0		3.6	V		
Output Voltage	B Port I/Os	Vout	V _{CCB} =2.3V~5.5V	0		5.5	V		
			V _{CCA} =1.65V~1.95V,	V _{CCI} -		Vcci	v		
	A Port I/Os		V _{CCB} =2.3V~5.5V	0.2		. 001	-		
			V _{CCA} =2.3V~3.6V,	V _{CCI} -		V _{CCI}	V		
High-Level Input Voltage		VIH	V _{CCB} =2.3V~5.5V	0.4		001			
	B Port I/Os		• 111		V _{CCA} =1.65V~3.6V,	V _{CCI} - 0.4		V _{CCI}	V
	OE Input		V _{CCB} =2.3V~5.5V	V _{CCA} ×0.65		5.5	V		
	A Port I/Os			0		0.15	V		
Low Lovel Input Veltage	B Port I/Os	V	V _{CCA} =1.65V~3.6V,	0		0.15	V		
Low-Level Input Voltage	OE Input	V _{IL}	V _{CCB} =2.3V~5.5V	0		V _{CCA} ×0.35	V		
	A Port I/Os	-				10	ns/V		
Input Transition Rise or	B Port I/Os		V_{CCA} =1.65V~3.6V,			10	ns/V		
Fall Rate	OE Input		V _{CCB} =2.3V~5.5V			10	ns/V		
Operating Temperature		T _A		-40		+125	°C		

Notes: 1. V_{CCI} is the supply voltage associated with the input port.

2. V_{CCO} is the supply voltage associated with the output port.

3. V_{CCA} must be less than or equal to V_{CCB} , and V_{CCA} must not exceed 3.6V.

Preliminary

CMOS IC

■ **ELECTRICAL CHARACTERISTICS** (T_A=25°C, unless otherwise specified)

PARAMETE	PARAMETER		TEST CONDITIONS		MIN	TYP	MAX	UNIT
Port A Output High Volta	ge	V _{OHA}	V _{CCA} =1.65V~3.6V, V _{CCB} =2.3V~5.5V, I _{OH} =-20µA, V _{IB} ≥ V _{CCB} -0.4V		V _{CCA} ×0.67			V
Port A Output Low Voltag	e	V _{OLA}	V _{CCA} =1.65V~3 V _{CCB} =2.3V~5.4 V _{IB} ≤ 0.15V	•			0.4	V
Port B Output High Volta	ge	V _{OHB}	$V_{CCA} = 1.65V \sim 3$ $V_{CCB} = 2.3V \sim 5.5$ $V_{IA} \ge V_{CCA} - 0.2$	5V, Ι _{ΟΗ} =-20μΑ	V _{ССВ} ×0.67			V
Port B Output Low Voltag	e	V _{OLB}	V_{CCA} =1.65V~3 V_{CCB} =2.3V~5.8 $V_{IA} \le 0.15V$	•			0.4	v
Input Leakage Current	OE	I _{I(LEAK)}	V _{CCA} =1.65V~3 V _{CCB} =2.3V~5.4				±1	μΑ
Power OFF Leakage	A Port	I _{OFF}	V _{CCA} =0V, V _{CCE}				±1	μA
Current	B Port	OFF	V _{CCA} =0V~3.6\				±1	μA
High-Impedance State Output Current	A or B Port	I _{oz}	V _{CCA} =1.65V~3.6V, V _{CCB} =2.3V~5.5V, OE=GND				±1	μA
				V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V			2.4	μA
		I _{CCA}		V _{CCA} =3.6V, V _{CCB} =0V			2.2	μΑ
			V _I =V _O =Open,	V _{CCA} =0V, V _{CCB} =5.5V			-1	μA
Supply Current			I _O =0A	V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V			12	μΑ
		I _{CCB}		V _{CCA} =3.6V, V _{CCB} =0V			-1	μA
				V _{CCA} =0V, V _{CCB} =5.5V			1	μA
		I _{CCA} +I _{CCB}	V _I =V _{CCI} or GND, I _O =0A	V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V			14.4	μA
Input Capacitance	OE	CIN	V _{CCA} =3.3V, V _C	CCB=3.3V		2.5		pF
Output Capacitance	A Port	C _{IO}	Vee - 2 2 / V			5		pF
	B Port	CIO	V_{CCA} =3.3V, V_{CCB} =3.3V			6		pF

Notes: 1. V_{CCI} is the supply voltage associated with the input port.

2. V_{CCO} is the supply voltage associated with the output port.

3. V_{CCA} must be less than or equal to V_{CCB} , and V_{CCA} must not exceed 3.6V.

SWITCHING CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CC	NDITIONS	MIN	TYP	MAX	UNIT
				V _{CCB} =2.5V±0.2V			5.3	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			5.4	ns
	Driving			V _{CCB} =5V±0.5V			6.8	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	2.3		8.8	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	2.4		9.6	ns
	Driving			V _{CCB} =5V±0.5V	2.6		10	ns
				V _{CCB} =2.5V±0.2V			3.2	ns
Propagation Delay	Push-Pull			V _{CCB} =3.3V±0.3V			3.7	ns
From Input (A) to Output (B)	Driving			V _{CCB} =5V±0.5V			3.8	ns
			$V_{CCA}=2.5V\pm0.2V$	V _{CCB} =2.5V±0.2V	1.7		6.3	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	2.0		6.0	ns
	Driving			V _{CCB} =5V±0.5V	2.1		5.8	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			2.4	ns
	Driving			V _{CCB} =5V±0.5V			3.1	ns
	Open-Drain		$V_{CCA}=3.3V\pm0.3V$	V _{CCB} =3.3V±0.3V	1.3		4.2	ns
	Driving	1		V _{CCB} =5V±0.5V	1.4		4.6	ns
		t _{PHL}		V _{CCB} =2.5V±0.2V			4.4	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			4.5	ns
	Driving			V _{CCB} =5V±0.5V			4.7	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	1.9		5.3	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	1.1		4.4	ns
	Driving			V _{CCB} =5V±0.5V	1.2		4.0	ns
	Push-Pull Driving			V _{CCB} =2.5V±0.2V			3.0	ns
Propagation Delay				V _{CCB} =3.3V±0.3V			3.6	ns
From Input (B) to Output (A)				V _{CCB} =5V±0.5V			4.3	ns
			V _{CCA} =2.5V±0.2V	V _{CCB} =2.5V±0.2V	1.8		4.7	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	2.6		4.2	ns
	Driving			V _{CCB} =5V±0.5V	1.2		4.0	ns
	Push-Pull			V_{CCB} =3.3V±0.3V			2.5	ns
	Driving			V _{CCB} =5V±0.5V			3.3	ns
	Open-Drain		V _{CCA} =3.3V±0.3V	V_{CCB} =3.3V±0.3V	1.0		124	ns
	Driving			V _{CCB} =5V±0.5V	1.0		97	ns
	Duch Dull			$V_{CCB}=2.5V\pm0.2V$			6.8	ns
	Push-Pull			$V_{CCB}=3.3V\pm0.3V$			7.1	ns
	Driving			$V_{CCB}=5V\pm0.5V$			7.5	ns
	Onon Drain		V _{CCA} =1.8V±0.15V	$V_{CCB}=2.5V\pm0.2V$	45		260	ns
	Open-Drain Driving			$V_{CCB}=3.3V\pm0.3V$	36		208	ns
	Driving			V _{CCB} =5V±0.5V	27		198	ns
	Durah Dull			$V_{CCB}=2.5V\pm0.2V$			3.5	ns
Propagation Delay	Push-Pull Driving	+_		$V_{CCB}=3.3V\pm0.3V$			4.1	ns
From Input (A) to Output (B)	Driving	t _{PLH}		$V_{CCB}=5V\pm0.5V$			4.4	ns
			$V_{CCA}=2.5V\pm0.2V$	V _{CCB} =2.5V±0.2V	43		250	ns
	Open-Drain			$V_{CCB}=3.3V\pm0.3V$	36		206	ns
	Driving			V _{CCB} =5V±0.5V	27		190	ns
	Push-Pull			$V_{CCB}=3.3V\pm0.3V$			4.2	ns
	Driving			V _{CCB} =5V±0.5V			4.4	ns
	Open-Drain	-	V _{CCA} =3.3V±0.3V	$V_{CCB}=3.3V\pm0.3V$	36		204	ns
	Driving			V _{CCB} =5V±0.5V	28		165	ns

Preliminary

CMOS IC

SWITCHING CHARACTERISTICS (Cont.)

PARAMETER	-	SYMBOL	TEST CC	NDITIONS	MIN	TYP	MAX	UNIT
	Push-Pull			V _{CCB} =2.5V±0.2V			5.3	ns
				$V_{CCB}=3.3V\pm0.3V$			4.5	ns
	Driving			V _{CCB} =5V±0.5V			0.5	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	45		175	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	36		140	ns
	Driving			V _{CCB} =5V±0.5V	27		102	ns
				V _{CCB} =2.5V±0.2V			2.5	ns
Propagation Delay	Push-Pull			V _{CCB} =3.3V±0.3V			1.6	ns
From Input (B) to Output (A)	Driving	t _{PLH}		V _{CCB} =5V±0.5V			1.0	ns
			$V_{CCA}=2.5V\pm0.2V$	V _{CCB} =2.5V±0.2V	44		170	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	37		140	ns
	Driving			V _{CCB} =5V±0.5V	27		103	ns
	Push-Pull	-		V _{CCB} =3.3V±0.3V			2.5	ns
	Driving			$V_{CCB}=5V\pm0.5V$			2.6	ns
	Open-Drain		V_{CCA} =3.3V±0.3V	$V_{CCB}=3.3V\pm0.3V$	3.0		139	ns
	Driving			$V_{CCB}=5V\pm0.5V$	3.0		105	ns
	g			$V_{CCB} = 2.5V \pm 0.2V$	0.0		200	ns
			Vcc4=1 8V+0 15V	$V_{CCB}=3.3V\pm0.3V$			200	ns
			V _{CCA} -1.0V±0.13V	$V_{CCB}=5V\pm0.5V$			200	ns
Enable Time		t _{en}		$V_{CCB} = 2.5V \pm 0.2V$			200	ns
From Input (OE) to Output (A	or B)		V _{CCA} =2.5V±0.2V				200	ns
	01 2)		VCCA 2.0V10.2V	V_{CCB} =5V±0.5V			200	ns
				$V_{CCB}=3.3V\pm0.3V$			200	ns
			$V_{CCA}=3.3V\pm0.3V$	V_{CCB} =5V±0.5V			200	ns
			V _{CCA} =1.8V±0.15V	$V_{CCB} = 2.5V \pm 0.2V$			50	ns
							40	ns
				V_{CCB} =5V±0.5V			35	ns
Disable Time			V _{CCA} =2.5V±0.2V	$V_{CCB} = 2.5V \pm 0.2V$			50	ns
From Input (OE) to Output (A	or B)	t _{dis}					40	ns
	01 2)			V_{CCB} =5V±0.5V			35	ns
				V_{CCB} =3.3V±0.3V			40	ns
			$V_{CCA}=3.3V\pm0.3V$	V_{CCB} =5V±0.5V			35	ns
				$V_{CCB} = 2.5V \pm 0.2V$	3.2		9.5	ns
	Push-Pull			$V_{CCB}=3.3V\pm0.3V$	2.3		9.3	ns
	Driving			$V_{CCB}=5V\pm0.5V$	2.0		7.6	ns
		-	V _{CCA} =1.8V±0.15V	$V_{CCB} = 2.5V \pm 0.2V$	38		165	ns
	Open-Drain			$V_{CCB} = 3.3V \pm 0.3V$	30		132	ns
	Driving			V_{CCB} =5V±0.5V	22		95	ns
Input Rise Time (A Port Rise Time)		-		$V_{CCB} = 2.5V \pm 0.2V$	2.8		7.4	ns
	Push-Pull			$V_{CCB} = 3.3V \pm 0.3V$	2.6		6.6	ns
	Driving	t _{rA}		V_{CCB} =5V±0.5V	1.8		5.6	ns
		-	$V_{CCA}=2.5V\pm0.2V$	$V_{CCB} = 2.5V \pm 0.2V$	3.0		149	ns
	Open-Drain			$V_{CCB}=2.3V\pm0.2V$ $V_{CCB}=3.3V\pm0.3V$	28		121	ns
	Driving			$V_{CCB}=5.5V\pm0.5V$ $V_{CCB}=5V\pm0.5V$	20		89	ns
	Push-Pull	1		$V_{CCB}=3.3V\pm0.3V$	2.3		5.6	ns
	Driving			$V_{CCB}=5.5V\pm0.5V$ $V_{CCB}=5V\pm0.5V$	1.9		4.8	
	Open-Drain	1	$V_{CCA}=3.3V\pm0.3V$	$V_{CCB}=3.3V\pm0.3V$ $V_{CCB}=3.3V\pm0.3V$	25		116	ns
	Driving			$V_{CCB}=3.3V\pm0.3V$ $V_{CCB}=5V\pm0.5V$	25 19		85	ns
		1	ļ	VCCB-3VIU.3V	19	L	00	ns

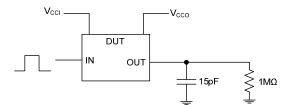
Preliminary

SWITCHING CHARACTERISTICS (Cont.)

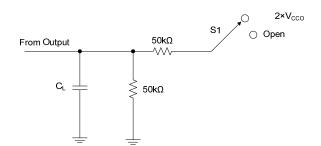
PARAMETER		SYMBOL	TEST CC	NDITIONS	MIN	TYP	MAX	UNIT
	Duel: D. "			$V_{CCB}=2.5V\pm0.2V$	4.0		10.8	ns
	Push-Pull			V _{CCB} =3.3V±0.3V	2.7		9.1	ns
	Driving			V _{CCB} =5V±0.5V	2.7		7.6	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	34		145	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	23		106	ns
	Driving			V _{CCB} =5V±0.5V	10		58	ns
				V _{CCB} =2.5V±0.2V	3.2		8.3	ns
Input Rise Time	Push-Pull			V _{CCB} =3.3V±0.3V	2.9		7.2	ns
(B Port Rise Time)	Driving	t _{rB}		V _{CCB} =5V±0.5V	2.4		6.1	ns
			$V_{CCA}=2.5V\pm0.2V$	V _{CCB} =2.5V±0.2V	35		151	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	24		112	ns
	Driving			V _{CCB} =5V±0.5V	12		64	ns
	Push-Pull			V _{CCB} =3.3V±0.3V	2.5		6.4	ns
	Driving			V _{CCB} =5V±0.5V	2.1		7.4	ns
	Open-Drain		$V_{CCA}=3.3V\pm0.3V$	V _{CCB} =3.3V±0.3V	26		116	ns
	Driving			V _{CCB} =5V±0.5V	14		72	ns
				V _{CCB} =2.5V±0.2V	2.0		5.9	ns
	Push-Pull			V _{CCB} =3.3V±0.3V	1.9		6.0	ns
	Driving			V _{CCB} =5V±0.5V	1.7		13.3	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	4.4		6.9	ns
	Open-Drain			$V_{CCB}=3.3V\pm0.3V$	4.3		6.4	ns
	Driving			$V_{CCB}=5V\pm0.5V$	4.2		6.1	ns
Input Fall Time (A Port Fall Time)	Push-Pull Driving			$V_{CCB}=2.5V\pm0.2V$	1.9	<u> </u>	5.7	ns
				$V_{CCB}=3.3V\pm0.3V$	1.9	<u> </u>	5.5	ns
		t _{fA}		$V_{CCB}=5V\pm0.5V$	1.8	<u> </u>	5.3	ns
			V _{CCA} =2.5V±0.2V	$V_{CCB}=2.5V\pm0.2V$	4.4		6.9	ns
	Open-Drain Driving			$V_{CCB}=3.3V\pm0.3V$	4.3	<u> </u>	6.2	ns
				$V_{CCB}=5V\pm0.5V$	4.2	<u> </u>	5.8	ns
	Push-Pull			V_{CCB} =3.3V±0.3V	2.0	ł	5.4	ns
	Driving			V_{CCB} =5V±0.5V	1.9	ł	5.0	ns
	Open-Drain	-	V _{CCA} =3.3V±0.3V	V_{CCB} =3.3V±0.3V	4.3	<u> </u>	6.1	ns
	Driving			V_{CCB} =5V±0.5V	4.2	ł	5.7	ns
				$V_{CCB} = 2.5V \pm 0.2V$	2.9	ł	13.8	ns
	Push-Pull			V_{CCB} =3.3V±0.3V	2.8	ł	16.2	ns
	Driving			$V_{CCB}=5V\pm0.5V$	2.8	ł	16.2	ns
			V _{CCA} =1.8V±0.15V	$V_{CCB}=2.5V\pm0.2V$	6.9	<u> </u>	13.8	ns
	Open-Drain			$V_{CCB}=3.3V\pm0.3V$	7.5	<u> </u>	16.2	ns
	Driving			$V_{CCB}=5V\pm0.5V$	7.0	ł	16.2	ns
Input Fall Time (B Port Fall Time)		-		$V_{CCB} = 2.5V \pm 0.2V$	2.2		7.8	ns
	Push-Pull			$V_{CCB} = 3.3V \pm 0.3V$	2.4	<u> </u>	6.7	ns
	Driving	t _{fB}		V_{CCB} =5V±0.5V	2.6		6.6	ns
			$V_{CCA}=2.5V\pm0.2V$	$V_{CCB}=2.5V\pm0.2V$	5.1		8.8	ns
	Open-Drain			$V_{CCB}=2.3V\pm0.2V$ $V_{CCB}=3.3V\pm0.3V$	5.4		9.4	ns
	Driving			$V_{CCB}=5.5V\pm0.5V$ $V_{CCB}=5V\pm0.5V$	5.4		9.4 10.4	ns
	Push-Pull		<u> </u>	$V_{CCB}=3.3V\pm0.3V$ $V_{CCB}=3.3V\pm0.3V$	2.3		7.4	ns
	Driving			$V_{CCB}=3.3V\pm0.3V$ $V_{CCB}=5V\pm0.5V$	2.3		7.4	
	Open-Drain	-	$V_{CCA}=3.3V\pm0.3V$	$V_{CCB}=3.3V\pm0.3V$ $V_{CCB}=3.3V\pm0.3V$	5.0		7.6	ns
			-	$V_{CCB}=3.3V\pm0.3V$ $V_{CCB}=5V\pm0.5V$	5.0 4.8	<u> </u>	8.3	ns
Driving		I	<u> </u>	VCCB-JVIU.JV	4.0	L	0.3	ns

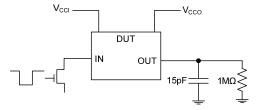
SWITCHING CHARACTERISTICS (Cont.)

PARAMETER		SYMBOL	TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT
	Push-Pull			V _{CCB} =2.5V±0.2V			21	Mbps
				V_{CCB} =3.3V±0.3V			22	Mbps
Data Rate	Driving	f		V _{CCB} =5V±0.5V			24	Mbps
	Onon drain	f _{data}		V _{CCB} =2.5V±0.2V			2	Mbps
	Open-drain Driving			V _{CCB} =3.3V±0.3V			2	Mbps
	Driving		V _{CCA} =1.8V±0.15V	V _{CCB} =5V±0.5V			2	Mbps
	Push-Pull		V _{CCA} -1.0V±0.15V	V _{CCB} =2.5V±0.2V	47			ns
	Driving			V _{CCB} =3.3V±0.3V	45			ns
Pulse Duration	Driving	tw		V _{CCB} =5V±0.5V	41			ns
	Open-drain	ι _{νν}		V _{CCB} =2.5V±0.2V	500			ns
	Driving			V_{CCB} =3.3V±0.3V	500			ns
	Dirving			V _{CCB} =5V±0.5V	500			ns
	Push-Pull		-V _{CCA} =2.5V±0.2V	$V_{CCB}=2.5V\pm0.2V$			20	Mbps
	Driving	f _{data}		V_{CCB} =3.3V±0.3V			22	Mbps
Data Rate				$V_{CCB}=5V\pm0.5V$			24	Mbps
	Open-drain Driving			$V_{CCB}=2.5V\pm0.2V$			2	Mbps
				V_{CCB} =3.3V±0.3V			2	Mbps
	g			$V_{CCB}=5V\pm0.5V$			2	Mbps
	Push-Pull			$V_{CCB}=2.5V\pm0.2V$	50			ns
	Driving			V_{CCB} =3.3V±0.3V	45			ns
Pulse Duration	g	tw		V_{CCB} =5V±0.5V	41			ns
	Open-drain			$V_{CCB}=2.5V\pm0.2V$	500			ns
	Driving			V_{CCB} =3.3V±0.3V	500			ns
				$V_{CCB}=5V\pm0.5V$	500			ns
Data Rate O	Push-Pull			$V_{CCB}=3.3V\pm0.3V$			23	Mbps
	Driving	f _{data}		$V_{CCB}=5V\pm0.5V$			24	Mbps
	Open-drain	- data		$V_{CCB}=3.3V\pm0.3V$			2	Mbps
	Driving		V _{CCA} =3.3V±0.3V	$V_{CCB}=5V\pm0.5V$			2	Mbps
	Push-Pull			$V_{CCB}=3.3V\pm0.3V$	43			ns
Pulse Duration	Driving	tw		$V_{CCB}=5V\pm0.5V$	41			ns
	Open-drain	ι _W		$V_{CCB}=3.3V\pm0.3V$	500			ns
	Driving			$V_{CCB}=5V\pm0.5V$	500			ns



Preliminary

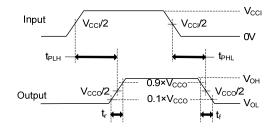

CMOS IC


TEST CIRCUIT AND WAVEFORMS

Load Circuits

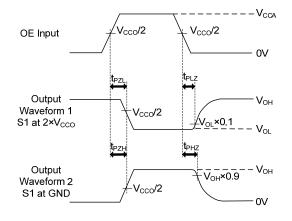
Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using a Push-Pull Driver

Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using an Open-Drain Driver


TEST	S1
telz/tezl	2×V _{cco}
t _{PHZ} /t _{PZH}	Open

Notes: 1. C_L includes probe and jig capacitance.

- 2. t_{en} is the same as t_{PZL} and t_{PZH} .
- t_{dis} is the same as t_{PLZ} and t_{PHZ} .
- 3. V_{CCI} is the supply voltage associated with the input.
- 4. V_{CCO} is the supply voltage associated with the input.



PULSE DURATION

PROPAGATION DELAY TIMES

ENABLE AND DISABLE TIMES

DETAILED DESCRIPTION

Overview

The **UTXS0102** device is a directionless voltage-level translator specifically designed for translating logic voltage levels. The A port is able to accept I/O voltages ranging from 1.65V to 3.6V, while the B port can accept I/O voltages from 2.3V to 5.5V. The device is a pass gate architecture with edge rate accelerators (one shots) to improve the overall data rate. $10k\Omega$ pull-up resistors, commonly used in open-drain applications, have been conveniently integrated so that an external resistor is not needed. While this device is designed for open-drain applications, the device can also translate push-pull CMOS logic outputs.

Architecture

The **UTXS0102** architecture does not require a direction-control signal to control the direction of data flow from A to B or from B to A.

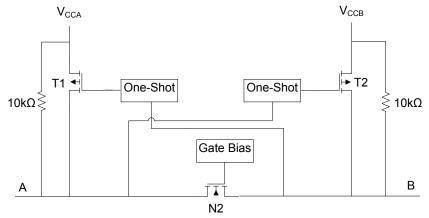


Figure 1. Architecture of UTXS0102 I/O Cell

Each A-port I/O has an internal $10k\Omega$ pull up resistor to V_{CCA}, and each B-port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCB}. The output one-shots detect rising edges on the A or B ports. During a rising edge, the one-shot turns on the PMOS transistors (T1, T2) for a short duration, which speeds up the low-to-high transition.

Input Driver Requirements

The fall time (t_{fA} , t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the **UTXS0102**.Similarly,the t_{PHL} and max data rates also depend on the output impedance of the external driver. The values for t_{fA} , t_{fB} , t_{PHL} , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 Ω .

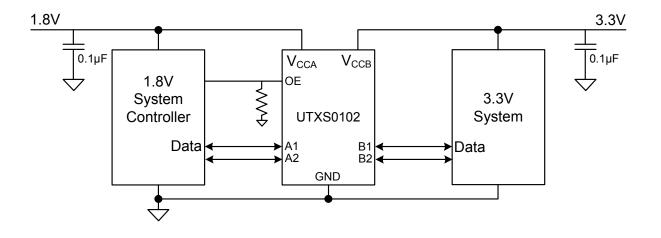
Power-Up

During operation, ensure that $V_{CCA} \leq V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \geq V_{CCB}$ does not damage the device, so any power supply can be ramped up first.

Enable and Disable

The **UTXS0102** has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. The disable time (t_{dis}) indicates the delay between the time when OE goes low and when the outputs actually get disabled(Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pull-up or Pull-down Resistors on I/O Lines


Each A-port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCA}, and each B-port I/O has an internal $10 k\Omega$ pull-up resistor to V_{CCB}. If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal $10 k\Omega$ resistors).

Device Functional Modes

The **UTXS0102** device has two functional modes, enabled and disabled. To disable the device set the OE input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

