

UNISONIC TECHNOLOGIES CO., LTD

Advance CMOS IC **1-BIT BIDIRECTIONAL** LEVEL-SHIFTING AND VOLTAGE-LEVEL TRANSLATOR DIRECTION-SENSING FOR **OPEN-DRAIN AND PUSH-PULL** SOT-26 APPLICATIONS

DESCRIPTION

WITH AUTO

This one-bit non-inverting translator uses two separate configurable power-supply rails. The A port is designed to track V_{CCA}. V_{CCA} accepts any supply voltage from 1.65V to 3.6V. The B port is designed to track V_{CCB}. V_{CCA} must be less than or equal to V_{CCB}. V_{CCB} accepts any supply voltage from 2.3V to 5.5V. This allows for low voltage bidirectional translation between any of the 1.8V, 2.5V, 3.3V, and 5V voltage nodes.

When the output-enable (OE) input is low, all outputs are placed in the high-impedance state.

To ensure the high-impedance state during power up or power down, OE should be tied to GND through a pull-down resistor; the minimum value of the resistor is determined by the current-sourcing capability of the driver.

FEATURES

- * 1.65V to 3.6V on A Port and 2.3V to 5.5V on B Port ($V_{CCA} \leq V_{CCB}$)
- * V_{CC} isolation feature If either V_{CC} input is at GND, all outputs are in the High-Impedance state
- * No Power-Supply Sequencing Required Either V_{CCA} or V_{CCB} Can be Ramped First
- * IOFF Supports Partial-Power-Down Mode Operation

APPLICATION

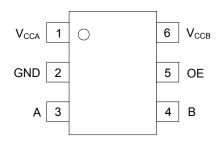

- * Handset
- * Smartphone
- * Tablet
- * Desktop PC

Advance

CMOS IC

ORDERING INFORMATION

Ordering	Number	Daakaga	Deaking
Lead Free	Halogen Free	Package	Packing
UTXS0101L-AG6-R	UTXS0101G-AG6-R	SOT-26	Tape Reel



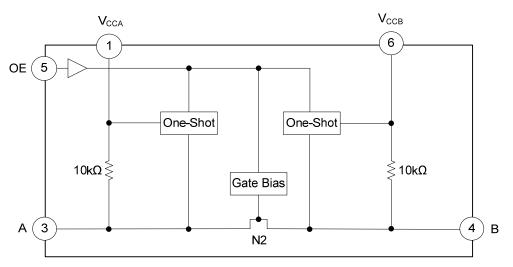
MARKING

■ PIN CONFIGURATION

PIN DESCRIPTION

PIN NO.	PIN NAME	I/O	DESCRIPTION	
1	V _{CCA}		A-Port supply voltage 1.65V \leq V _{CCA} \leq 3.6V and V _{CCA} \leq V _{CCB.}	
2	GND		Ground	
3	А	I/O	Input/output A. Referenced to V _{CCA}	
4	В	I/O	Input/output B. Referenced to V _{CCB}	
5	OE	I	3-state output-mode enable. Pull OE low to place all outputs in 3-state mode. Referenced to V_{CCA}	
6	V _{CCB}		B-Port supply voltage $2.3V \le V_{CCB} \le 5.5V$	

Note: I=Input, I/O=Input and Output


FUNCTION TABLE

SUPPLY	VOLTAGE	INPUTS	INPUTS/	OUTPUT
V _{CCA}	V _{CCB}	OE	An	Bn
1.65V ~ V _{CCB}	2.3V ~ 5.5V	L	Z	Z
1.65V ~ V _{CCB}	2.3V ~ 5.5V	Н	Input or Output	Output or Input
GND (Note 2)	GND (Note 2)	Х	Z	Z

Notes: 1. H = High voltage level ; L = Low voltage level ; Z : High impedance OFF-state ; X = Don't care.

2. When either V_{CCA} or V_{CCB} is at GND level, the device goes into Power-down mode.

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{CCA}	-0.5 ~ 4.6	V
Supply Voltage		V _{CCB}	-0.5 ~ 6.5	V
Input Voltage	A Port	V	-0.5 ~ 4.6	V
Input Voltage	B Port	V _{IN}	-0.5 ~ 6.5	V
Voltage Range Applied to Any Output In the High-Impedance or	A Port	M	-0.5 ~ 4.6	V
Power-Off State	B Port	V _{OUT}	-0.5 ~ 6.5	V
Voltage Range Applied to Any	A Port	N/	$-0.5 \sim V_{CCA} + 0.5$	V
Output In the High or Low State	B Port	V _{OUT}	-0.5 ~ V _{CCB} +0.5	V
Input Clamp Current	V _{IN} <0	I _{IK}	-50	mA
Output Clamp Current	utput Clamp Current V _{OUT} <0		-50	mA
Continuous Output Current		Ι _{ουτ}	±50	mA
Continuous Current Through V _{CCA} ,	V _{CCB} , or GND	I _{CC} / I _{GND}	±100	mA
Storage Temperature		T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

RECOMMENDED OPERATING CONDITIONS (T_A=25°C, unless otherwise specified)

PARAMETER	२	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Supply Voltage (Note 3)		V _{CCA}		1.65		3.6	V
Supply Voltage (Note 3)		V _{CCB}		2.3		5.5	V
Input Voltage		V _{IN}		0		V _{CCI}	V
Output Voltage	A Port I/Os	V	V _{CCA} =1.65V~3.6V,	0		3.6	V
Output Voltage	B Port I/Os	Vout	V _{CCB} =2.3V~5.5V	0		5.5	V
			V _{CCA} =1.65V~1.95V, V _{CCB} =2.3V~5.5V	V _{CCI} - 0.2		Vcci	V
	A Port I/Os	N	V _{CCA} =2.3V~3.6V, V _{CCB} =2.3V~5.5V	V _{CCI} - 0.4		Vcci	V
High-Level Input Voltage	B Port I/Os	- V _{IH}	V _{CCA} =1.65V~3.6V,	V _{CCI} - 0.4		V _{CCI}	V
	OE Inputs		V _{CCB} =2.3V~5.5V	V _{CCA} ×0.65		5.5	V
	A Port I/Os			0		0.15	V
Low Lovel Input Veltage	B Port I/Os	VIL	V _{CCA} =1.65V~3.6V,	0		0.15	V
Low-Level Input Voltage	OE Inputs	VIL	V _{CCB} =2.3V~5.5V	0		V _{CCA} ×0.35	V
Innut Transition Dies or	A Port I/Os					10	ns/V
Input Transition Rise or Fall Rate	B Port I/Os	Δt/Δv	V _{CCA} =1.65V~3.6V, V _{CCB} =2.3V~5.5V			10	ns/V
	OE Inputs		V _{CCB} -2.3V~3.3V			10	ns/V
Operating Temperature		T _A		-40		+85	°C

Notes: 1. V_{CCI} is the supply voltage associated with the input port.

2. V_{CCO} is the supply voltage associated with the output port.

3. V_{CCA} must be less than or equal to V_{CCB} , and V_{CCA} must not exceed 3.6V.

Advance

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETE	R	SYMBOL	TEST C	CONDITIONS	MIN	TYP	MAX	UNIT	
Port A Output High Voltag	e	V _{OHA}	V _{CCA} =1.65V~3 V _{CCB} =2.3V~5.4 V _{IB} ≥ V _{CCB} -0.4	5V, Ι _{ΟΗ} =-20μΑ,	V _{CCA} ×0.67			V	
Port A Output Low Voltag	e	V _{OLA}	V _{CCA} =1.65V~3 V _{CCB} =2.3V~5.9 V _{IB} ≤ 0.15V	,			0.4	v	
Port B Output High Voltag	e	V _{OHB}	V _{CCA} =1.65V~3 V _{CCB} =2.3V~5.9 V _{IA} ≥ V _{CCA} -0.2	5V, Ι _{ΟΗ} =-20μΑ	V _{ССВ} ×0.67			v	
Port B Output Low Voltag	e	V _{OLB}	V _{CCA} =1.65V~3 V _{CCB} =2.3V~5.9 V _{IA} ≤ 0.15V	,			0.4	v	
Input Leakage Current	OE	I _{I(LEAK)}	V _{CCA} =1.65V~3 V _{CCB} =2.3V~5.4	•			±1	μA	
Power OFF Leakage	A Port	I _{OFF}	V _{CCA} =0V, V _{CCE}	₃=0V~5.5V			±1	μA	
Current	B Port	IOFF	V _{CCA} =0V~3.6\	/, V _{CCB} =0V			±1	μA	
High-Impedance State Output Current	A or B Port	I _{OZ}	V _{CCA} =1.65V~3 V _{CCB} =2.3V~5.4	,			±1	μA	
		I _{CCA}	I _{CCA}		V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V			2.4	μΑ
					V _{CCA} =3.6V, V _{CCB} =0V			2.2	μΑ
			V _{IN} =V _{OUT} =Open	V _{CCA} =0V,			-1	μA	
Quiescent Supply Current			I _O =0A	V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V			12	μΑ	
		I _{CCB}		V _{CCA} =3.6V, V _{CCB} =0V			-1	μΑ	
				V _{CCA} =0V, V _{CCB} =5.5V			1	μA	
		I _{CCA} +I _{CCB}	V _{IN} =V _{CCI} , I _O =0A	V _{CCA} =1.65V~V _{CCB} , V _{CCB} =2.3V~5.5V			14.4	μA	
Input Capacitance	OE	CIN				2.5		pF	
Output Capacitance	A Port	C _{IO}	V _{CCA} =3.3V, V _{CCB} =3.3V			5		pF	
Output Capacitance	B Port	CIO	10			6		pF	

Notes: 1. V_{CCI} is the V_{CC} associated with the input port.

2. V_{CCO} is the V_{CC} associated with the output port.

3. V_{CCA} must be less than or equal to $V_{\text{CCB}},$ and V_{CCA} must not exceed 3.6V.

SWITCHING CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	TEST CC	NDITIONS	MIN	TYP	MAX	UNIT
				V _{CCB} =2.5V±0.2V			5.3	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			5.4	ns
	Driving			V _{CCB} =5V±0.5V			6.8	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	2.3		8.8	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	2.4		9.6	ns
	Driving			V _{CCB} =5V±0.5V	2.6		10	ns
				V _{CCB} =2.5V±0.2V			3.2	ns
Propagation Delay	Push-Pull			V _{CCB} =3.3V±0.3V			3.7	ns
From Input (A) to Output (B)	Driving			V _{CCB} =5V±0.5V			3.8	ns
			$V_{CCA}=2.5V\pm0.2V$	V _{CCB} =2.5V±0.2V	1.7		6.3	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	2.0		6.0	ns
	Driving			V _{CCB} =5V±0.5V	2.1		5.8	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			2.4	ns
	Driving			V _{CCB} =5V±0.5V			3.1	ns
	Open-Drain		1_{1}	V _{CCB} =3.3V±0.3V	1.3		4.2	ns
	Driving			V _{CCB} =5V±0.5V	1.4		4.6	ns
	Ť	t _{PHL}		V _{CCB} =2.5V±0.2V			4.4	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			4.5	ns
	Driving		V _{CCA} =1.8V±0.15V	V _{CCB} =5V±0.5V			4.7	ns
	Open-Drain Driving			V _{CCB} =2.5V±0.2V	1.9		5.3	ns
		-		V _{CCB} =3.3V±0.3V	1.1		4.4	ns
				V _{CCB} =5V±0.5V	1.2		4.0	ns
Propagation Delay	Push-Pull Driving			V _{CCB} =2.5V±0.2V			3.0	ns
				V _{CCB} =3.3V±0.3V			3.6	ns
From Input (B) to Output (A)				V _{CCB} =5V±0.5V			4.3	ns
		-	V _{CCA} =2.5V±0.2V	$V_{CCB}=2.5V\pm0.2V$	1.8		4.7	ns
	Open-Drain Driving			V _{CCB} =3.3V±0.3V	1.6		4.2	ns
				V _{CCB} =5V±0.5V	1.2		4.0	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			2.5	ns
	Driving			V _{CCB} =5V±0.5V			3.3	ns
	Open-Drain		$V_{CCA}=3.3V\pm0.3V$	V _{CCB} =3.3V±0.3V	1.0		124	ns
	Driving			V _{CCB} =5V±0.5V	1.0		97	ns
				V _{CCB} =2.5V±0.2V			6.8	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			7.1	ns
	Driving			V _{CCB} =5V±0.5V			7.5	ns
	_		V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	45		260	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	36		208	ns
	Driving			V _{CCB} =5V±0.5V	27		198	ns
				V _{CCB} =2.5V±0.2V			3.5	ns
Propagation Delay	Push-Pull			V _{CCB} =3.3V±0.3V			4.1	ns
From Input (A) to Output (B)	Driving	t _{PLH}		V _{CCB} =5V±0.5V			4.4	ns
· · · · · · · · · · · · · · · · · · ·	_		$V_{CCA}=2.5V\pm0.2V$	$V_{CCB}=2.5V\pm0.2V$	43		250	ns
	Open-Drain			$V_{CCB}=3.3V\pm0.3V$	36		206	ns
	Driving			$V_{CCB}=5V\pm0.5V$	27		190	ns
	Push-Pull			$V_{CCB}=3.3V\pm0.3V$			4.2	ns
	Driving			$V_{CCB}=5V\pm0.5V$			4.4	ns
	-	1	V_{CCA} =3.3V±0.3V					
	Open-Drain		VCCA 0.0110.01	$V_{CCB}=3.3V\pm0.3V$	36		204	ns

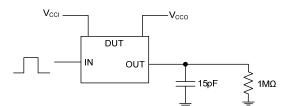
SWITCHING CHARACTERISTICS (Cont.)

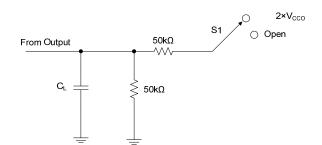
PARAMETER		SYMBOL	TEST CC	NDITIONS	MIN	TYP	MAX	UNIT
	Push-Pull			$V_{CCB}=2.5V\pm0.2V$			5.3	ns
				$V_{CCB}=3.3V\pm0.3V$			4.5	ns
	Driving			V _{CCB} =5V±0.5V			0.5	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	45		175	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	36		140	ns
	Driving			V _{CCB} =5V±0.5V	27		102	ns
				V _{CCB} =2.5V±0.2V			2.5	ns
Propagation Delay	Push-Pull			V _{CCB} =3.3V±0.3V			1.6	ns
From Input (B) to Output (A)	Driving	t _{PLH}		V _{CCB} =5V±0.5V			1.0	ns
			$V_{CCA}=2.5V\pm0.2V$	V _{CCB} =2.5V±0.2V	44		170	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	37		140	ns
	Driving			V _{CCB} =5V±0.5V	27		103	ns
	Push-Pull			V _{CCB} =3.3V±0.3V			2.5	ns
	Driving			V _{CCB} =5V±0.5V			2.6	ns
	Open-Drain		$V_{CCA}=3.3V\pm0.3V$	V _{CCB} =3.3V±0.3V	3.0		139	ns
	Driving			V _{CCB} =5V±0.5V	3.0		105	ns
				V _{CCB} =2.5V±0.2V			200	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =3.3V±0.3V			200	ns
				V _{CCB} =5V±0.5V			200	ns
Enable Time		t _{en}	V _{CCA} =2.5V±0.2V	V _{CCB} =2.5V±0.2V			200	ns
From Input (OE) to Output (A	or B)						200	ns
	,			V _{CCB} =5V±0.5V			200	ns
				V _{CCB} =3.3V±0.3V			200	ns
			$V_{CCA}=3.3V\pm0.3V$	V _{CCB} =5V±0.5V			200	ns
				V _{CCB} =2.5V±0.2V			50	ns
				V _{CCB} =3.3V±0.3V			40	ns
				V _{CCB} =5V±0.5V			35	ns
Disable Time			$V_{CCA}=2.5V\pm0.2V$	V _{CCB} =2.5V±0.2V			50	ns
From Input (OE) to Output (A	or B)	t _{dis}					40	ns
	,			V _{CCB} =5V±0.5V			35	ns
				V _{CCB} =3.3V±0.3V			40	ns
			$V_{CCA}=3.3V\pm0.3V$	V _{CCB} =5V±0.5V			9.8	ns
				V _{CCB} =2.5V±0.2V	3.2		9.5	ns
	Push-Pull			V _{CCB} =3.3V±0.3V	2.3		9.3	ns
	Driving			V _{CCB} =5V±0.5V	2.0		7.6	ns
			V _{CCA} =1.8V±0.15V	V _{CCB} =2.5V±0.2V	38		165	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	30		132	ns
	Driving			V _{CCB} =5V±0.5V	22		95	ns
			-	V _{CCB} =2.5V±0.2V	2.8		7.4	ns
Rise and Fall Time	Push-Pull			V _{CCB} =3.3V±0.3V	2.1		6.6	ns
(A Port Rise Time)	Driving	t _{rA}		V _{CCB} =5V±0.5V	0.9		5.6	ns
			$V_{CCA}=2.5V\pm0.2V$	$V_{CCB}=2.5V\pm0.2V$	34		149	ns
	Open-Drain			$V_{CCB}=3.3V\pm0.3V$	28		121	ns
	Driving			$V_{CCB}=5V\pm0.5V$	24		89	ns
	Push-Pull	1		V _{CCB} =3.3V±0.3V	2.3		5.6	ns
	Driving			$V_{CCB}=5V\pm0.5V$	1.9		4.8	ns
	Open-Drain	1	$V_{CCA}=3.3V\pm0.3V$	V _{CCB} =3.3V±0.3V	25		116	ns
	Driving			$V_{CCB}=5V\pm0.5V$	19		85	ns
	12 ming	I	I	* CCB-0 * ±0.0 *	10	I	00	113

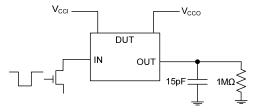
SWITCHING CHARACTERISTICS (Cont.)

PARAMETER		SYMBOL	TEST CC	NDITIONS	MIN	TYP	MAX	UNIT
				V _{CCB} =2.5V±0.2V	1.1		10.8	ns
	Push-Pull			V _{CCB} =3.3V±0.3V	1.0		9.1	ns
	Driving		V ₀₀₄ =1.8V+0.15V	V _{CCB} =5V±0.5V	1.0		7.6	ns
				V _{CCB} =2.5V±0.2V	34		145	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	23		106	ns
	Driving			V _{CCB} =5V±0.5V	10		76	ns
				V _{CCB} =2.5V±0.2V	1.3		8.3	ns
Rise and Fall Time	Push-Pull Driving			V _{CCB} =3.3V±0.3V	0.9		7.2	ns
(B Port Rise Time)	Driving	t _{rB}		V _{CCB} =5V±0.5V	0.4		6.1	ns
			$V_{CCA}=2.5V\pm0.2V$	V _{CCB} =2.5V±0.2V	35		151	ns
	Open-Drain			V_{CCB} =3.3V±0.3V	24		112	ns
	Driving			$V_{CCB}=5V\pm0.5V$	12		81	ns
	Push-Pull			V_{CCB} =3.3V±0.3V	1.6		64	ns
	Driving			$V_{CCB}=5V\pm0.5V$	0.6		7.4	ns
	Open-Drain			V _{CCB} =3.3V±0.3V	26		116	ns
	Driving			$V_{CCB}=5V\pm0.5V$	14		72	ns
	Push-Pull			V _{CCB} =2.5V±0.2V	1.9		5.9	ns
	Driving		V _{CCA} =1.8V±0.15V	V _{CCB} =3.3V±0.3V	1.9		6.0	ns
	Driving			V _{CCB} =5V±0.5V	1.4		13.3	ns
	Open-Drain Driving			V _{CCB} =2.5V±0.2V	4.4		6.9	ns
		t _{fA}		V_{CCB} =3.3V±0.3V	4.3		6.4	ns
	Driving			V _{CCB} =5V±0.5V	4.2		6.1	ns
	Push-Pull Driving			$V_{CCB}=2.5V\pm0.2V$	1.9		5.7	ns
Rise and Fall Time				$V_{CCB}=3.3V\pm0.3V$	1.4		5.5	ns
(A Port Fall Time)			V _{CCA} =2.5V±0.2V	$V_{CCB}=5V\pm0.5V$	0.8		5.3	ns
	Open-Drain Driving			$V_{CCB}=2.5V\pm0.2V$	4.4		6.9	ns
				$V_{CCB}=3.3V\pm0.3V$	4.3		6.2	ns
				$V_{CCB}=5V\pm0.5V$	4.2		5.8	ns
	Push-Pull			$V_{CCB}=3.3V\pm0.3V$	1.4		5.4	ns
	Driving		V _{CCA} =3.3V±0.3V	V _{CCB} =5V±0.5V	1.0		5.0	ns
	Open-Drain			$V_{CCB}=3.3V\pm0.3V$	4.3		6.1	ns
	Driving			V _{CCB} =5V±0.5V	4.2		5.7	ns
	Push-Pull			$V_{CCB}=2.5V\pm0.2V$	2.2		13.8	ns
	Driving			$V_{CCB}=3.3V\pm0.3V$	2.2		16.2	ns
			V _{CCA} =1.8V±0.15V	$V_{CCB}=5V\pm0.5V$	2.6		16.2	ns
	Open-Drain			$V_{CCB}=2.5V\pm0.2V$	6.9		13.8	ns
	Driving			$V_{CCB}=3.3V\pm0.3V$	7.5		16.2	ns
				$V_{CCB}=5V\pm0.5V$	7.0		16.2	ns
	Push-Pull			$V_{CCB}=2.5V\pm0.2V$	2.2		7.8	ns
Rise and Fall Time	Driving	t _{fB}		$V_{CCB}=3.3V\pm0.3V$	2.4		6.7	ns
(B Port Fall Time)			V _{CCA} =2.5V±0.2V	$V_{CCB}=5V\pm0.5V$	2.6		6.6	ns
	Open-Drain			$V_{CCB}=2.5V\pm0.2V$	5.1		8.8	ns
	Driving			$V_{CCB}=3.3V\pm0.3V$	5.4		9.4	ns
				$V_{CCB} = 5V \pm 0.5V$	5.4		10.4	ns
	Push-Pull Driving			$V_{CCB}=3.3V\pm0.3V$	2.3		7.8	ns
	Driving Open Drain		V_{CCA} =3.3V±0.3V	$V_{CCB} = 5V \pm 0.5V$	2.4		7.6	ns
	Open-Drain			$V_{CCB}=3.3V\pm0.3V$	5.0		7.6	ns
	Driving			$V_{CCB}=5V\pm0.5V$	4.8	l	8.3	ns

SWITCHING CHARACTERISTICS (Cont.)

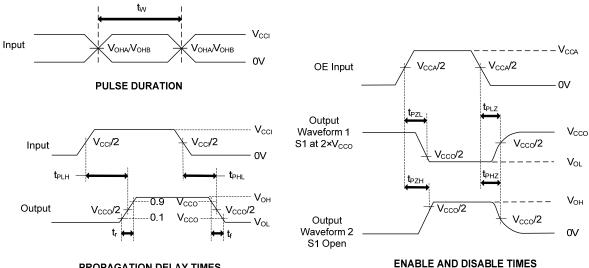

PAR	AMETER		SYMBOL	TEST CO	ONDITIONS	MIN	TYP	MAX	UNIT
					V _{CCB} =2.5V±0.2V			21	Mbps
	Push-Pull [Driving			V _{CCB} =3.3V±0.3V			22	Mbps
Data Rate			ŕ		V _{CCB} =5V±0.5V			24	Mbps
Dala Rale			f _{data}		V _{CCB} =2.5V±0.2V			2	Mbps
	Open-Drain	n Driving			V _{CCB} =3.3V±0.3V			2	Mbps
		r		V _{CCA} =1.8V±0.15V	V _{CCB} =5V±0.5V			2	Mbps
	Push-Pull	Data		V _{CCA} -1.0V±0.15V	V _{CCB} =2.5V±0.2V	47			ns
	Driving	Inputs			V_{CCB} =3.3V±0.3V	45			ns
Pulse Duration	Driving	inputo	t _w		V _{CCB} =5V±0.5V	41			ns
	Open-Drain	Data	ι _{νν}		$V_{CCB}=2.5V\pm0.2V$	500			ns
	Driving	Inputs			V_{CCB} =3.3V±0.3V	500			ns
	Dirving	mputo			V_{CCB} =5V±0.5V	500			ns
					$V_{CCB}=2.5V\pm0.2V$			20	Mbps
	Push-Pull [ush-Pull Driving			V_{CCB} =3.3V±0.3V			22	Mbps
Data Rate		f _{data}		$V_{CCB}=5V\pm0.5V$			24	Mbps	
Bula rulo	Open-Drain Driving			$V_{CCB}=2.5V\pm0.2V$			2	Mbps	
				V_{CCB} =3.3V±0.3V			2	Mbps	
		ı — — — — — — — — — — — — — — — — — — —		V _{CCA} =2.5V±0.2V	$V_{CCB}=5V\pm0.5V$			1	Mbps
	Push-Pull	Data			$V_{CCB}=2.5V\pm0.2V$	50			ns
	Driving	Inputs			V_{CCB} =3.3V±0.3V	45			ns
Pulse Duration	g		tw		$V_{CCB}=5V\pm0.5V$	41			ns
	Open-Drain	Data			$V_{CCB}=2.5V\pm0.2V$	500			ns
	Driving	Inputs			V_{CCB} =3.3V±0.3V	500			ns
	Birring	pato			$V_{CCB}=5V\pm0.5V$	500			ns
	Push-Pull [Drivina			V_{CCB} =3.3V±0.3V			23	Mbps
Data Rate		Sirving	f _{data}		$V_{CCB}=5V\pm0.5V$			24	Mbps
	Open-Drair	n Drivina	·uala		V_{CCB} =3.3V±0.3V			2	Mbps
	opon 210	· =·····g		V _{CCA} =3.3V±0.3V	$V_{CCB}=5V\pm0.5V$			2	Mbps
		Data			$V_{CCB}=3.3V\pm0.3V$	43			ns
Pulse Duration	Driving	Inputs	tw		$V_{CCB}=5V\pm0.5V$	41			ns
	Open-Drain				$V_{CCB}=3.3V\pm0.3V$	500			ns
	Driving	Inputs			$V_{CCB}=5V\pm0.5V$	500			ns


Advance


TEST CIRCUIT AND WAVEFORMS

Load Circuits

Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using a Push-Pull Driver



Data Rate, Pulse Duration, Propagation Delay, Output Rise-Time and Fall-Time Measurement Using an Open-Drain Driver

S1
2×V _{CCO}
Open

Notes: 1. C_L includes probe and jig capacitance.

- 2. t_{en} is the same as t_{PZL} and t_{PZH} .
- t_{dis} is the same as t_{PLZ} and $t_{\text{PHZ}}.$
- 3. V_{CCI} is the supply voltage associated with the input.
- 4. V_{CCO} is the supply voltage associated with the input.

PROPAGATION DELAY TIMES

DETAILED DESCRIPTION

Overview

The **UTXS0101** device uses two separate configurable power-supply rails, V_{CCA} and V_{CCB}. V_{CCB} accepts any supply voltage from 2.3V to 5.5V and V_{CCA} accepts any supply voltage from 1.65V to 3.6V as long as Vs is less than or equal to V_{CCB}. The A port and B port are designed to track V_{CCA} and V_{CCB} respectively allowing for low voltage bidirectional translation between any of the 1.8V, 2.5V, 3.3V, and 5V voltage nodes.

The **UTXS0101** device does not require power sequencing between V_{CCA} and V_{CCB} during power-up so the power supply rails can be ramped in any order. A V_{CCA} value greater than or equal to V_{CCB} (V_{CCA} \geq V_{CCB}) does not damage the device, but during operation, V_{CCA} must be less than or equal to V_{CCB} (V_{CCA} \leq V_{CCB}) at all times.

The output-enable (OE) input circuit is designed so that it is supplied by V_{CCA} and when the (OE) input is low, all outputs are placed in the high-impedance state. To ensure the high-impedance state of the outputs during power up or power down, the OE input pin must be tied to GND through a pull-down resistor and must not be enabled until V_{CCA} and V_{CCB} are fully ramped and stable. The minimum value of the pull-down resistor to ground is determined by the current-sourcing capability of the driver.

Architecture

The **UTXS0101** architecture (see Figure 1) does not require a direction-control signal to control the direction of data flow from A to B or from B to A.

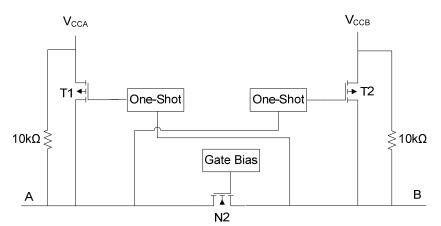


Figure 1. Architecture of UTXS0101 I/O Cell

Power-Up

During operation, ensure that $V_{CCA} \leq V_{CCB}$ at all times. During power-up sequencing, $V_{CCA} \geq V_{CCB}$ does not damage the device, so any power supply can be ramped up first.

Enable and Disable

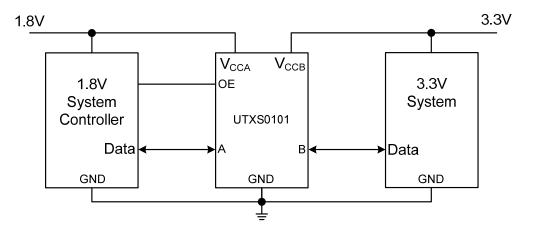
The **UTXS0101** has an OE input that is used to disable the device by setting OE low, which places all I/Os in the Hi-Z state. The disable time (t_{dis}) indicates the delay between the time when OE goes low and when the outputs actually get disabled (Hi-Z). The enable time (t_{en}) indicates the amount of time the user must allow for the one-shot circuitry to become operational after OE is taken high.

Pull-up or Pull-down Resistors on I/O Lines

Each A port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCA}, and each B port I/O has an internal $10k\Omega$ pull-up resistor to V_{CCB}. If a smaller value of pull-up resistor is required, an external resistor must be added from the I/O to V_{CCA} or V_{CCB} (in parallel with the internal $10k\Omega$ resistors).

Device Functional Modes

The **UTXS0101** device has two functional modes, enabled and disabled. To disable the device set the OE input low, which places all I/Os in a high impedance state. Setting the OE input high will enable the device.


Input Driver Requirements

The fall time (t_{fA} , t_{fB}) of a signal depends on the output impedance of the external device driving the data I/Os of the **UTXS0101**. Similarly, the t_{PHL} and max data rates also depend on the output impedance of the external driver.

The values for t_{fA} , t_{fB} , t_{PHL} , and maximum data rates in the data sheet assume that the output impedance of the external driver is less than 50 Ω .

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

