

UNISONIC TECHNOLOGIES CO., LTD

UMD9116

Advance

CMOS IC

LOW-VOLTAGE H-BRIDGE DRIVER

DESCRIPTION

The UTC **UMD9116** can supply up to 1.8 A of output current. It operates on a motor power supply voltage from 0 to 9.6 V, and a device power supply voltage of 2.0 V to 7.0 V.

The UTC **UMD9116** provides an integrated motor driver solution. The device can drive one DC motor or other devices like solenoids. The output driver block consists of power MOSFET's configured as an H-bridge to drive the motor winding.

The UTC **UMD9116** has a PWM (IN1/IN2) input interface. Both interfaces are compatible with industry-standard devices.

Internal shutdown functions are provided for overcurrent protection, short circuit protection, under voltage lockout, and over temperature.

FEATURES

- * PWM Interface, IN1/IN2
- * 1.8-A Maximum Drive Current
- * Separate Motor and Logic Supply Pins:
 - Motor V_M: 0~9.6 V
 - Logic V_{CC}: 2.0~7 V
- * Protection Features
 - V_{CC} under voltage Lockout
- Overcurrent Protection
- * Thermal Shutdown

ORDERING INFORMATION

Ordering	Number	Deekere	Packing	
Lead Free	Halogen Free	Package		
UMD9116L-S08-R UMD9116G-S08-R		SOP-8	Tape Reel	

MARKING

UMD9116

PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION			
1	V _M	Motor power supply			
2	OUT1	Motor output			
3	OUT2	Connect to motor winding			
4	GND	Device ground			
5	IN2				
6	IN1	PHASE Input			
7	nSLEEP	Sleep mode input When this pin is in logic low, the device enters low-power sleep mode. The device			
		operates normally when this pin is logic high. Internal pull down.			
8	V _{cc}	Logic Power supply			

UMD9116

BLOCK DIAGRAM

Advance

■ ABSOLUTE MAXIMUM RATING (T_A = 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Motor Power Supply Voltage Range	V _M	10	V
Logic Power Supply Voltage Range	V _{cc}	7	V
Control Pin Voltage Range	IN1, IN2, nSLEEP	7	V
Peak Drive Current	OUT1, OUT2	Internally limited	А
Operating Virtual Junction Temperature Range	TJ	-40 ~ +125	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

ELECTRICAL CHARACTERISTICS

 $(T_A = 25^{\circ}C)$, over recommended operating conditions unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITION	MIN	TYP	MAX	UNIT
POWER SUPPLIES (V _M , V _{CC})						
V _M Operating Voltage	V _M				9.6	V
	I _{VM}	V _M =5V, V _{CC} =3V, No PWM		90		μA
V _M Operating Supply Current		V _M =5V, V _{CC} =3V, 50kHz PWM		0.8		mA
V _M Sleep Mode Supply Current	I _{VMQ}	V_M =5V, V_{CC} =3V, nSLEEP=0		3		μA
V _{CC} Operating Voltage	V _{cc}				7	V
V _{cc} Operating Supply		V_M =5V, V_{CC} =3V, No PWM		300		uA
Current	ICC	V _M =5V, V _{CC} =3V, 50kHz PWM		0.7		mA
V _{CC} Sleep Mode Supply Current	I _{VCQ}	V_M =5V, V_{CC} =3V, nSLEEP=0		100		nA
CONTROL INPUTS (IN1/PH, I	N2/EN, nSLEE	EP)				-
Input Logic Low Voltage	V _{IL}			0.38×V _{CC}		V
Input Logic High Voltage	VIH			$0.46 \times V_{CC}$		V
Input Logic Hysteresis	V _{HYS}			0.08×V _{CC}		mV
Input Logic Low Current	l _{IL}	V _{IN} =0V	-5		5	uA
Input Logic High Current	I _{IH}	V _{IN} =3.3V			50	uA
Pull down Resistance	R _{PD}			100		kΩ
MOTOR DRIVER OUTPUTS (OUT1, OUT2)					
HS+LS FET On-Resistance	R _{DS(ON)}	V _M =5V, V _{CC} =3V, I _O =800mA, T _J =25℃		280		mΩ
Off-state leakage current	I _{OFF}	V _{OUT} =0	-200		200	nA
PROTECTION CIRCUITS						
V Under Voltage Leokout	V _{UVLO}	V _{CC} falling			1.9	V
V _{CC} Under Voltage Lockout		V _{CC} rising			2.0	V
Protection Trip Level	I _{OCP}			4.6		Α
Over Current Deglitch Time	t _{DEG}			1		us
Over Current Retry Time	t _{RETRY}			0.02		ms
Thermal Shutdown Temperature	T _{TSD}	Die temperature T _J		160		°C

Advance

■ **TIMING REQUIREMENTS** (T_A=25°C, V_M=5 V, V_{CC}=3 V, R_L=20 Ω)

PARMMETER	TEST CONDITION	MIN	TYP	MAX	UNIT
t1	Output enable time		300		ns
t2	Output disable time		300		ns
t3	Delay time, INx high to OUTx high		160		ns
t4	Delay time, INx low to OUTx low		160		ns
t5	Output rise time		188		ns
t6	Output fall time		188		ns
t _{wake}	Wake time, nSLEEP rising dege to part active		30		us

Input and Output Timing

PRINCIPLE OF OPERATION

A low-power sleep mode is included, which can be enabled using the nSLEEP pin.

The UTC **UMD9116** is a H-bridge driver that can drive one DC motor or other devices like solenoids. The outputs are controlled using either a PWM interface (IN1/IN2) on the UTC **UMD9116**.

In addition, the UTC **UMD9116** adds protection features above traditional discrete implementations: under voltage lockout, overcurrent protection, and thermal shutdown.

■ FEATURE DESCRIPTION

Bridge Control

Table 2 shows the logic for the UTC **UMD9116** device:

Table 2.System Design Requirements						
nSLEEP	IN1	IN2	OUT1	OUT2	Function (DC Motor)	
0	Х	Х	Z	Z	Coast	
1	0	0	Z	Z	Coast	
1	0	1	L	Н	Reverse	
1	1	0	Н	L	Forward	
1	1	1	L	L	Brake	

Sleep Mode

If the nSLEEP pin is brought to a logic-low state, the UTC **UMD9116** enters a low-power sleep mode. In this state, all unnecessary internal circuitry is powered down.

Overcurrent Protection

An analog current limit circuit on each FET limits the current through the FET by removing the gate drive. Operation resumes automatically after t_{RETRY} has elapsed. Overcurrent conditions will be detected on both the high-side and low-side devices.

V_{CC} Under voltage Lockout

If at any time the voltage on the V_{CC} pin falls below the under voltage lockout threshold voltage, all FETs in the H-bridge will be disabled. Operation resumes when V_{CC} rises above the UVLO threshold.

Thermal Shutdown

If the die temperature exceeds safe limits, all FETs in the H-bridge will be disabled. After the die temperature falls to a safe level, operation automatically resumes.

TYPICAL APPLICATION CIRCUIT

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

