LD1119A

Advance

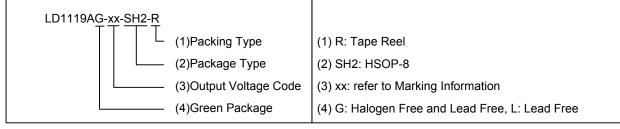
LINEAR INTEGRATED CIRCUIT

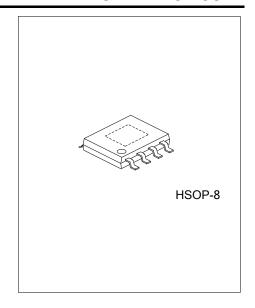
LOW DROP FIXED AND ADJUSTABLE POSITIVE VOLTAGE REGULATORS


DESCRIPTION

The UTC **LD1119A** is a low dropout, 3-terminal positive voltage regulator designed to provide output current up to 1A, There are adjustable version (V_{REF} =1.25V) and various fixed versions.

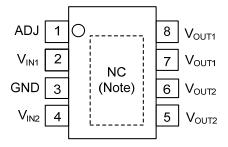
■ FEATURES


- * Low dropout voltage
- * Output current up to 1.0A
- * Built-in current limit and over temperature protection
- * Low current consumption
- * Support MLCC

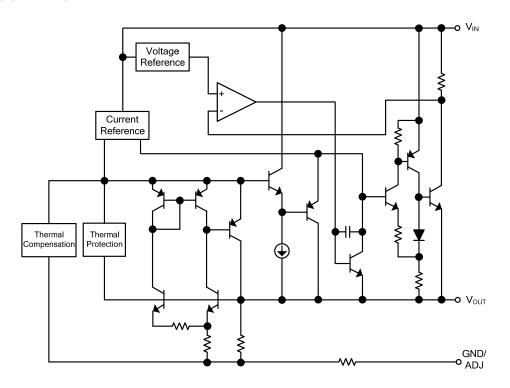

■ ORDERING INFORMATION

Notes. 1. I III Assignment. A. ADJ G. GND 1. VIN

2. xx: Output Voltage, Refer to Marking Information.



■ MARKING INFORMATIONS


DACKACE	VOLTAG	E CODE	MARKING
PACKAGE V _{OUT1} V _{OUT2}			<u>8 7 6 5</u>
HSOP-8	AD: ADJ	33: 3.3V	Voltage Code at V _{OUT2} Voltage Code at V _{OUT1} Voltage Code at V _{OUT2} Voltage Code at V _{OUT3} Voltage Code at V _{OUT3} Voltage Code at V _{OUT3} Voltage Code at V _{OUT4} Voltage Code at V _{OUT5} Voltage Code at V _{OUT5} Voltage Code at V _{OUT6} Voltage Code at V _{OUT7} Voltag

■ PIN CONFIGURATION

Note: No connect.

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATINGS** (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
DC Input Voltage	V_{IN}	18	V
Power Dissipation	P_{D}	Internally limited	
Junction Temperature	T_J	+150	°C
Operating Temperature (Note 2)	T _{OPR}	-40 ~ +125	°C
Storage temperature	T _{STG}	-65 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

2. This condition is only determined from design. It can't be 100% tested in mass production.

■ RECOMMENDED OPERATING RATINGS

PARAMETER	SYMBOL	RATINGS	UNIT
Input Voltage	V_{IN}	12	V

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT
Junction to Ambient	θ_{JA}	150	°C/W

■ ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, \text{ refer to the test circuits}, T_J=0 \sim 125^{\circ}C, C_O=10 \mu F \text{ unless otherwise specified})$

For LD1119A-3.3

1 OI ED 1110/1 0.0			_			_
PARAMETER	SYMBOL	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Output Voltage	V _{OUT}	V _{IN} =5.3V, I _{OUT} =10mA, T _J =25°C	3.234	3.300	3.366	V
Output Voltage	V _{OUT}	V _{IN} =4.75 to 10V, I _{OUT} =0~1000mA	3.234	3.300	3.366	V
Line Regulation	ΔV_{OUT}	V _{IN} =4.75 to 12V, I _{OUT} =0mA		1	8	mV
Load Regulation	ΔV_{OUT}	V _{IN} =4.75V, I _{OUT} =0~800mA		1	10	mV
Operating Input Voltage	V _{IN}	I _{OUT} =100mA			12	V
Quiescent Current	IQ	V _{IN} ≤12V		5	10	mA
Current Limit	I _{LIMIT}	V _{IN} =8.3V, T _J =25°C	1000			mA
Output Noise Voltage	e _N	B=10Hz to 10KHz, T _J =25°C		100		μV
Supply Voltage Rejection	SVR	I _{OUT} =40mA, f=120Hz, T _J =25°C, V _{IN} =6.3V, V _{RIPPLE} =1V _{PP}		70		dB
Dropout Voltage	V _D	I _{OUT} =800mA		1.2	1.4	V

For LD1119A-ADJ

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Reference Voltage	V_{REF}	V_{IN} - V_{OUT} =2 V , I_{OUT} =10 mA , T_J =25 $^{\circ}C$	1.225	1.25	1.275	V
Reference Voltage	VDEE	V _{IN} -V _{OUT} =1.4 to 10V, I _{OUT} =10∼1000mA	1.225	1.25	1.275	>
Line Regulation	ΔV_{OUT}	V_{IN} - V_{OUT} =1.5 to 12V, I_{OUT} =10mA		0.1	0.5	%
Load Regulation	ΔV_{OUT}	V _{IN} -V _{OUT} =3V, I _{OUT} =10~800mA		0.1	0.4	%
Operating Input Voltage	V_{IN}				12	V
Adjustment Pin Current	I_{ADJ}	V _{IN} ≤12V		100	150	μΑ
Adjustment Pin Current Change		V_{IN} - V_{OUT} =1.4 to 10V I_{OUT} =10 ~ 1000mA		1	5	μА
Minimum Load Current	I _{O(MIN)}	V _{IN} =12V		2	5	mA
Current Limit	I _{LIMIT}	V _{IN} -V _{OUT} =5V, T _J =25°C	1000			mA
Supply Voltage Rejection	5 V R	I_{OUT} =40mA, f=120Hz, T_J =25°C, V_{IN} - V_{OUT} =3V, V_{RIPPLE} =1 V_{PP}		70		dB
Dropout Voltage	V_D	I _{OUT} =800mA		1.2	1.4	V

■ APPLICATION NOTE of LD1119A ADJUSTABLE

The **LD1119A** adjustable has a reference voltage of between the OUT and ADJ/GND pins. I_{ADJ} is $60\mu A$ typ. (120 μA max.) and ΔI_{ADJ} is $1\mu A$ typ. (5 μA max.).

 R_1 is normally fixed to 120 Ω .

From figure 6 we obtain:

 $V_{OUT} = V_{REF} + R_2(I_{ADJ} + I_{R1}) = V_{REF} + R_2(I_{ADJ} + V_{REF}/R_1) = V_{REF}(1 + R_2/R_1) + R_2 \times I_{ADJ}$

Usually R_2 value is in the range of few $K\Omega$, so the R_2 X I_{ADJ} product could be neglected; then the above expression becomes: $V_{OUT}=V_{REF}(1+R_2/R_1)$

For better load regulation, realize a good Kelvin connection of R_1 and R_2 is important. Particularly R_1 connection must be realized very close to OUT and ADJ/GND pin, while R_2 ground connection must be placed as near as possible to the negative Load pin. Ripple rejection can be improved by introducing a $10\mu F$ electrolytic capacitor placed in parallel to the R_2 resistor (See Fig. 8)

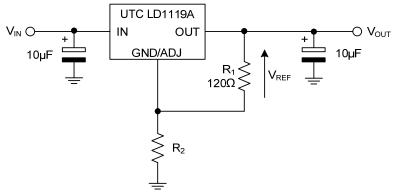


Fig.6 Adjustable Output Voltage Application Circuit

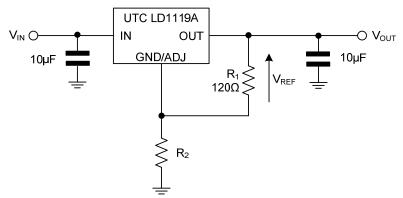


Fig.7 Adjustable Output Voltage Application Circuit (FOR MLCC)

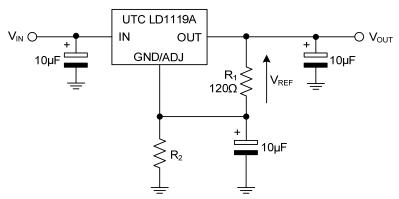


Fig.8 Adjustable Output Voltage Application with improved Ripple Rejection.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.