

UNISONIC TECHNOLOGIES CO., LTD

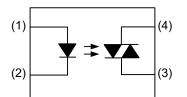
UOC3021S

Preliminary

PHOTOCOUPLER

4-PIN DIP RANDOM-PHASE OPTOISOLATORS TRIAC DRIVER OUTPUT

DESCRIPTION

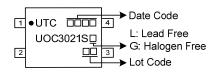

The UTC **UOC3021S** is consists of gallium arsenide infrared emitting diodes,optically coupled to a silicon bilateral switch.

The UTC **UOC3021S** is suitable for applications requiring isolated triac triggering.

FEATURES

- * 250V Phototriac Driver Output
- * Gallium-Arsenide-Diode Infrared Source and Optically-Coupled Silicon Traic Driver (Bilateral Switch)
- * High Isolation 7500V Peak
- * Output Driver Designed for 220V ac

SYMBOL




ORDERING INFORMATION

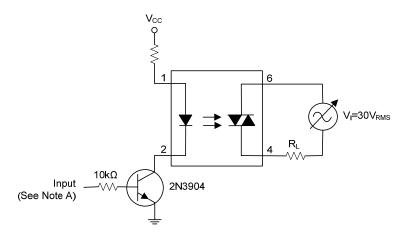
Ordering Number		Deskere	Pin Assignment				Deeking	
Lead Free	Halogen Free	Package	1	2	3	4	Packing	
UOC3021SL-D04-T UOC3021SG-D04-T		DIP-4	А	к	М	Μ	Tube	
Note: Pin Assignment: A: ANODE K: CATHODE M: MAIN TERMINAL								

(1)Packing Type	(1) T: Tube
(2)Package Type	(2) D04: DIP-4
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free

MARKING

■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

PARAMETER		SYMBOL	RATINGS	UNIT	
lasarit	LED Forward Current	LED Forward Current		50	mA
Input	LED Reverse Voltage	LED Reverse Voltage		3	V
Output	Repetitive Peak OFF-Stat	Repetitive Peak OFF-State Voltage		400	V
	ON State DMS Ormant	T _A =25°C	I _{T(RMS)}	100	mA
	ON-State RMS Current	T _A =70°C		50	mA
	Non-Repetitive Surge Cur (50~60Hz, 1 Cycle)	Non-Repetitive Surge Current (50~60Hz, 1 Cycle)		1.2	А
Operating Junction Temperature		TJ	-40 ~ +100	°C	
Storage Temperature		T _{STG}	-40 ~ +150	°C	


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
INPUT						_		
LED Dropout Voltage	VF	I _F =10mA		1.2	1.5	V		
LED Reverse Voltage	IR	V _R =3V			100	μA		
OUTPUT								
Peak OFF-State Current	I _{DRM}	I _F =0mA, V _{DRM} =400V			100	nA		
Peak ON-State Voltage	V _{TM}	I _F =10mA, I _{TM} =100mA.		1.4	2.5	V		
Holding Current	Iн			100		μA		
TRANSFER CHARACTERISTICS								
Trigger LED Current	I _{FT}	V _D =3V, R _L =100Ω		8	15	mA		

■ TEST CIRCUITS AND WAVEFORMS

Critical Rate of Rise Test Circuit

NOTE A. The critical rate of rise of off-state voltage, dv/dt, is measured with the input at 0V. The frequency of V_{IN} is increased until the phototriac turns on. This frequency is then used to calculate the dv/dt according to the formula:

 $dv/dt=2\sqrt{2\pi fV_{IN}}$

The critical rate of rise of commutating voltage, dv/dt(c), is measured by applying occasional 5V pulses to the input and increasing the frequency of Vin until the phototriac stays on (latches) after the input pulse has ceased. With no further input pulses, the frequency of Vin is then gradually decreased until the phototriac turns off. The frequency at which turn-off occurs may then be used to calculate the dv/dt(c) according to the formula shown above.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

