USS304NX

Preliminary

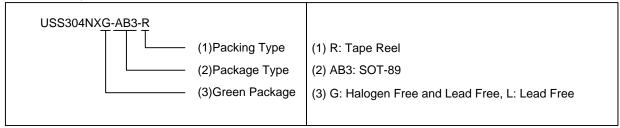
NPN EPITAXIAL SILICON TRANSISTOR

60V NPN LOW SATURATION MEDIUM POWER TRANSISTOR

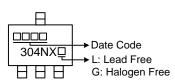
DESCRIPTION

The **USS304NX** is an new low saturation 60V NPN transistor offers extremely low on state losses making it ideal for use in DC-DC circuits and various driving and power management functions.

1 SOT-89


■ FEATURES

- * Low collector-emitter saturation voltage V_{CE(SAT)}
- * High collector current capability IC and ICM
- * High collector current gain (hFE) at high IC
- * High efficiency due to less heat generation
- * Smaller required Printed-Circuit Board (PCB) area than for conventional transistors


ORDERING INFORMATION

Ordering Number		Dookogo	Pin Assignment			Dooking	
Lead Free	Halogen Free	Package	1	2	3	Packing	
USS304NXL-AB3-R	USS304NXG-AB3-R	SOT-89	В	С	Е	Tape Reel	

Note: Pin Assignment: B: Base C: Collector E: Emitter

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 3

■ **ABSOLUATE MAXIUM RATINGS** (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	RATINGS	UNIT
Collector to Base Voltage	V_{CBO}	60	V
Collector to Emitter Voltage	V_{CEO}	60	V
Emitter to Base Voltage	V_{EBO}	5	V
Collector Current	I _C	4.7	Α
Peak Collector Current	I _{CM}	9.4	Α
Collector Dissipation	Pc	1.65	W
Junction Temperature	TJ	+150	°C
Storage Temperature	T _{STG}	-55 ~ +150	°C

Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

- 2. Single pulse, P_W =10ms.
- 3. Device mounted on FR-4 PCB with minimum recommended pad layout.

■ THERMAL DATA

PARAMETER	SYMBOL	RATINGS	UNIT	
Junction to Ambient	θ_{JA}	76	°C/W	
Junction to Case	θ _{JC}	20	°C/W	

■ **ELECTRICAL CHARACTERISTICS** (T_A= 25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Collector-Base Breakdown Voltage	BV _{CBO}	I _C =100μA	IVIIIN	115	IVIAA	V
Collector-Emitter Breakdown Voltage	BVCBO	I _C =1μA				V
Emitter-Base Breakdown Voltage	BVEBO	I _E =100μA				V
Collector Cutoff Current	I _{CBO}	V _{CB} =60V, I _E =0A			100	nA
Collector-Emitter Cut-off Current	I _{CES}	V _{CE} =120V			100	nA
Emitter Cutoff Current	I _{EBO}	V _{EB} =5V, I _C =0A			100	nA
Base Emitter On Voltage (Note)	V _{BE(ON)}	V _{CE} =2V, I _C =2A			0.85	V
Base-Emitter Saturation Voltage	V BE(ON)	I _C =1A, I _B =100mA			0.9	V
(Note)	$V_{BE(SAT)}$	I _C =4A, I _B =400mA			1.05	V
Collector-Emitter Saturation Voltage (Note)	V _{CE} (SAT)	I _C =0.5A, I _B =50mA			35	mV
		I _C =1A, I _B =50mA			70	mV
		I _C =1A, I _B =10mA			120	mV
		I _C =2A, I _B =40mA			150	mV
		I _C =4A, I _B =200mA			210	mV
		I _C =4A, I _B =400mA			200	mV
		I _C =4A, I _B =80mA			290	mV
		I _C =4.7A, I _B =235mA			245	mV
	h _{FE}	I _C =0.5A, V _{CE} =2V	300			
		I _C =1A, V _{CE} =2V	300			
DC Current Transfer Ratio (Note)		I _C =2A, V _{CE} =2V	250			
		I _C =4A, V _{CE} =2V	150			
		$I_C=6A$, $V_{CE}=2V$	75			
Delay Time	t_d			15		ns
Rise Time	t _r			95		ns
Turn-ON Delay Time (Note 1)	t _{D(ON)}	I _C =3A, V _{CC} =12.5V, I _{BON} =0.15A		110		ns
Storage Time	t _s	I _{BOFF} =-0.15A		360		ns
Fall Time	t _f			195		ns
Turn-OFF Delay Time	t _{D(OFF)}			555		ns
Transition Frequency	f _T	I _C =100mA, V _{CE} =10V, f=1MHz		130		MHz
Collector Capacitance	C_OB	$V_{CB}=10V$, $I_{E}=I_{e}=0A$, $f=1MHz$		48	70	pF

Note: Measured under pulsed conditions. Pulse Test: Pulse width ≤ 300µs, Duty cycle≤2%.

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.