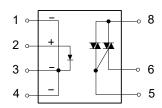
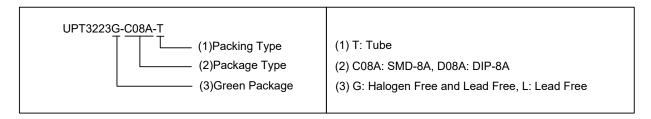
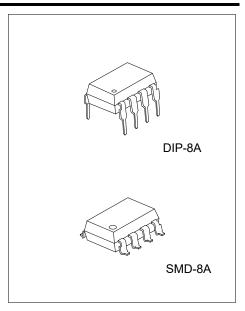
UPT3223 PHOTOCOUPLER

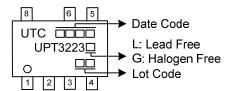

RANDOM PHASE POWER TRIAC DIP TYPE SSR IDEAL FOR AC LOAD CONTROL

DESCRIPTION

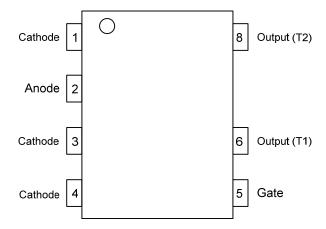
The UPT3223 Solid State Relays (SSR) are an integration of an infrared emitting diode (IRED), a Phototriac Detector and a main output Triac. These devices are ideally suited for controlling high voltage AC loads with solid state reliability while providing 4kV isolation (V_{ISO}(RMS) from input to output.


FEATURES * Compact DIP type SSR that's ideal for AC load control * Supports 1.2A ON-state RMS currents. * Handles both 100 and 200V AC loads * High dielectric strength: 5,000V AC (between input and output)


SYMBOL


ORDERING INFORMATION

Ordering	Number	Dookogo	Packing	
Lead Free	Halogen Free	Package		
UPT3223L-C08A-T	UPT3223G-C08A-T	SMD-8A	Tube	
UPT3223L-D08A-T	UPT3223G-D08A-T	DIP-8A	Tube	



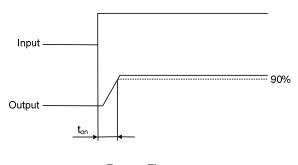
■ MARKING

■ PIN CONFIGURATION

UPT3223 PHOTOCOUPLER

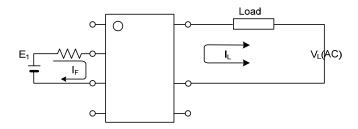
■ ABSOLUTE MAXIMUM RATING (T_A=25°C, unless otherwise specified)

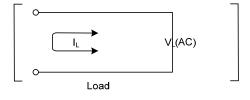
PARAMETER		SYMBOL	RATINGS	UNIT
Input	LED Forward Current	I _F	50	mA
	LED Reverse Voltage	V_R	6	V
	Peak Forward Current (f=100Hz, Duty Ratio=0.1%)	I _{FP}	1	Α
Output	Repetitive Peak OFF-State Voltage	V_{DRM}	600	V
	ON-State RMS Current	I _{T(RMS)}	1.2	Α
	Non-Repetitive Surge Current (60Hz, 1 Cycle)	I _{TSM}	12	Α
I/O Isolation Voltage		V_{ISO}	5000	V/AC
Operating Temperature		T _{OPR}	-40 ~ +100	°C
Storage Temperature		T _{STG}	-40 ~ +150	°C


- Notes: 1. Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.
 - 2. AC for 1 minute, R.H.= 40~60% R.H. In this test, pins 1, 2 are shorted together, and pins 3, 4 are shorted together.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT				
INPUT										
LED Dropout Voltage	V_{F}	I _F =20mA		1.21	1.3	V				
LED Reverse Voltage	I_{R}	V _R =6V			10	μΑ				
OUTPUT										
Peak OFF-State Current	I _{DRM}	I _F =0mA, V _{DRM} =600V			100	μΑ				
Peak ON-State Voltage	V_{TM}	I _F =10mA, I _{TM} =Max.			2.5	V				
Holding Current	I _H				25	mA				
Critical Rate of Rise of OFF-State	dv/dt	V _{DRM} =600V×1√2	200			1//110				
Voltage	dv/dt		200			V/µs				
TRANSFER CHARACTERISTICS										
Trigger LED Current	I _{FT}	$V_D=6V$, $R_L=100\Omega$			10	mA				
Turn on Time	t _{ON}	I_F =20mA V_D =6 V , R_L =100 Ω			100	μs				
I/O Isolation Resistance	R _{ISO}	500V DC	50			GΩ				


UPT3223 PHOTOCOUPLER


■ TEST CIRCUITS AND WAVEFORMS

Turn on Time

■ SCHEMATIC AND WIRING DIAGRAMS

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.