

UTC UNISONIC TECHNOLOGIES CO., LTD

GF4149

Preliminary

LINEAR INTEGRATED CIRCUIT

GROUND FAULT INTERRUPTER

DESCRIPTION

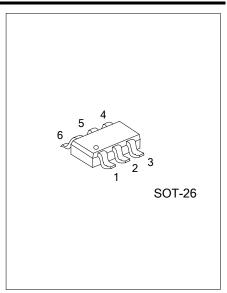
The UTC GF4149 is a low-power controller for detecting hazardous current paths to ground and ground-to-neutral faults. The UTC GF4149 application circuit opens the load contacts before a harmful shock occurs.

The UTC GF4149 contains a precision bandgap 14V shunt regulator, precision low-Vos sense amplifier, time-delay noise filter, window-detection comparators, and an SCR driver. The SCR driver provides increased current and temperature compensation to allow for a wider selection of external SCRs.

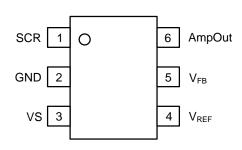
FEATURES

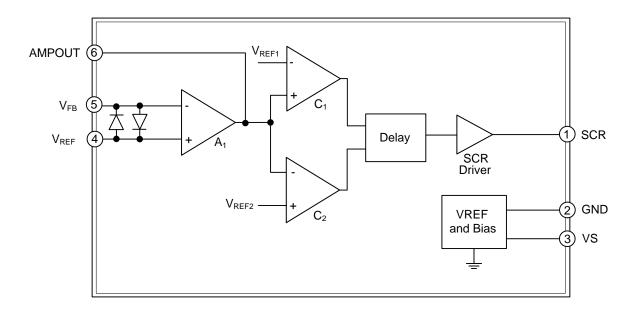
- * Precision Sense Amplifier and Bandgap Reference
- * Low-V_{OS} Offset
- * Built-in Noise Filter
- * High-Current SCR Gate Driver
- * Adjustable Sensitivity
- * Low Quiescent Current
- * Minimum External Components
- * Ideal for 120V or 220V Systems


ORDERING INFORMATION


Ordering Number		Daakaga	Decking
Lead Free	Halogen Free	Package	Packing
GF4149L-AG6-R	GF4149G-AG6-R	SOT-26	Tape Reel

GF4149G-AG6-R	
Ţ ── └── (1)Packing Type	(1) R: Tape Reel
(2)Package Type	(2) AG6: SOT-26
(3)Green Package	(3) G: Halogen Free and Lead Free, L: Lead Free


MARKING


PIN CONFIGURATION

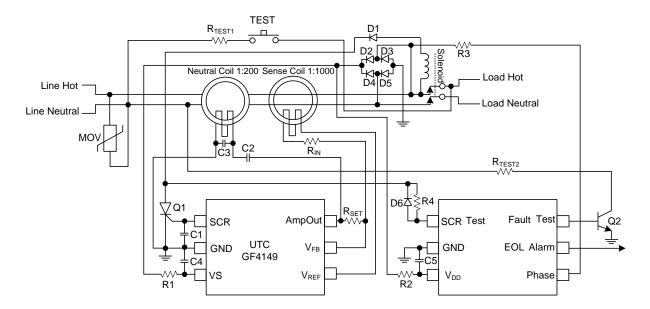
PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	SCR	Gate drive for external SCR
2	GND	Supply input
3	VS	Supply input
4	V_{REF}	Non-inverting input
5	V _{FB}	Inverting input
6	Amp Out	Current-sense amplifier output

BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING

PARAMETER	SYMBOL	RATINGS	UNIT
Continuous Supply Current, VS to GND	I _{CC}	15	mA
Continuous Supply Voltage to GND, All Pins	V _{cc}	-0.8~16	V
Storage Temperature	T _{STG}	-65~+150	°C


Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ DC ELECTRICAL CHARACTERISTICS (Unless otherwise specified, T_A=25°C, I_{shunt}=1mA)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Power Supply Shunt Regulator Voltage	V _{REG}	VS to GND	13.7	14.0	14.3	V
Quiescent Current	lq	Line to GND=10V	425	500	575	μA
Reference Voltage	V_{REF}	VREF to GND	6.85	7.00	7.15	V
Trip Threshold	V _{TH}	Amp Out to VREF	4.35	4.50	4.65	V
Amplifier Offset	Vos	Gain=1000	-175	±50	175	μV
Amplifier Positive Voltage Swing	V _{SW+}	Amp Out to VREF, I _{FAULT} =10µA	5.5			V
Amplifier Negative Voltage Swing	V _{SW-}	VREF to Amp Out, I _{FAULT} =-10µA	5.5			V
Amplifier Current Sink	I _{SINK}	Amp Out=V _{REF} - 3V, V _{FB} =V _{REF} + 100mV	400			μA
Amplifier Current Source	I _{SRL}	Amp Out=V _{REF} + 3V, V _{FB} =V _{REF} - 100mV	400			μA
Delay Filter	t _d	Delay from C1 trip to SCR L->H	0.65	1.5		ms
SCR Output Resistance	R _{OUT}	SCR to GND=250mV, Amp Out=V _{REF}		0.5	1.0	ΚΩ
	V _{OUT}	SCR to GND Amp Out=VREF		1	10	mV
SCR Output Voltage		SCR to GND Amp Out=V _{REF} +5V	3.0			V
SCR Output Current	Ι _{ΟυΤ}	SCR to GND =1V, Amp Out=V _{REF} + 5V, I _{SHUNT} =2mA	650	725		μA

TYPICAL APPLICATION CIRCUIT

BOM

Reference	Component	Reference	Component
C1	22nF	R _{TEST1}	15KΩ
C2	10nF	R _{TEST2}	10KΩ
C3	5.6nF	R _{IN}	470Ω
C4	220nF	R _{SET}	750KΩ
C5	1µF	R1	75ΚΩ
		R2	75ΚΩ
		R3	1MΩ
		R4	909KΩ

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

