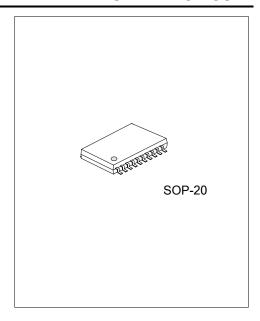
UNISONIC TECHNOLOGIES CO.,LTD.

UL318B

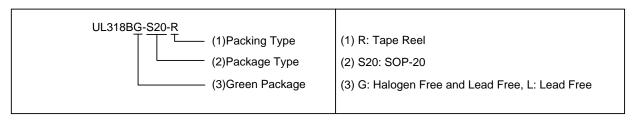

Preliminary

LINEAR INTEGRATED CIRCUIT

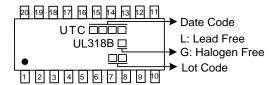
SERIAL-INTERFACED 4~6 DIGIT LED CONTROLLER IC

■ DESCRIPTION

The **UL318B** is a compact LED controller and driver that interface microprocessors to LED displays through a serial 3-wire interface. It drives LED connected in common anode configuration. The **UL318B** drives up to LEDs in 8 segment/6 digit~10 segment/4 digit configuration while functioning from a supply voltage of 5.0V.



■ FEATURES

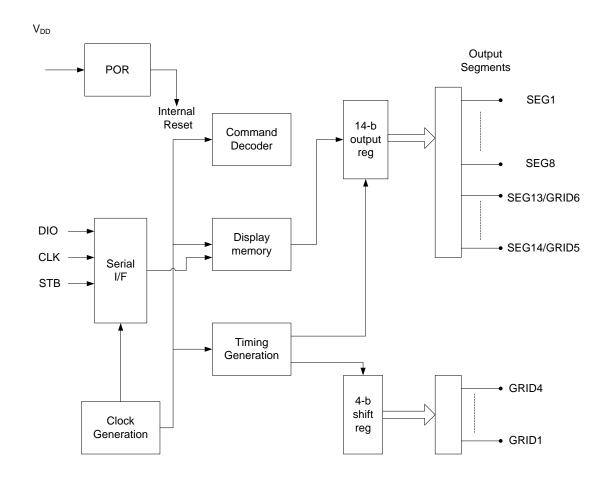

- * LED driver (8 segments/6 digits~10 segments/4 digits)
- * Output pins connected directly to the LEDs
- * 3-wire serial bus interface (CLK, STB, DIO)
- * 8-step dimming circuit to control the overall display brightness
- * Inputs with Schmitt trigger give superior noise immunity
- * 5.0 V (± 10%) for V_{DD}
- * Drives common-anode LED digits
- * Built-in power on reset circuits
- * Built-in pull-up resistor (CLK,STB,DIO)

■ ORDERING INFORMATION

Ordering Number		Deales	De alás a	
Lead Free	Halogen Free	Package	Packing	
UL318BL-S20-R	UL318BG-S20-R	SOP-20	Tape Reel	

■ MARKING

<u>www.unisonic.com.tw</u> 1 of 7


PIN CONFIGURATIONS

V _{DD} 1	0	20	STB
SEG1 2		19	CLK
SEG2 3		18	DIN
SEG3 4		17	GRID1
SEG4 5		16	GRID2
SEG5 6		15	GND
SEG6 7		14	GRID3
SEG7 8		13	GRID4
SEG8 9		12	GND
SEG13/GRID6 10		11	GRID5/SEG14

PIN CONFIGURATIONS

PIN NUMBER	SYMBOL	TYPE	FUNCTION
18	DIN	IN/OUT	Output serial data at falling edge of the shift clock, starting from lower bit. Input serial data is clocked in at rising edge of the shift clock, starting from lower bit.
19	CLK	IN	Reads serial data at rising edge, and outputs data at falling edge.
20	STB	IN	Initializes serial interface at rising or falling edge for reception of command. Data input after the falling edge of STB are processed as a command. While command data are processed, current processing is stopped, and the serial interface is initialized. While STB is high, instructions are ignored.
2, 9	SEG1 ∫ SEG8	OUT	Segment output pin
10, 11	SEG13/GRID6 SEG14/GRID5	OUT	Segment output pin (dual function as Digit output pin)
13,14,16,17	GRID1 ∫ GRID4	OUT	Digit output pin
1	VDD	PWR	5.0 V \pm 10% Core main supply voltage. Bypass to GND through a 0.1 μ F capacitor as close to the pin as possible
12, 15	GND	PWR	Connect this pin to system GND

■ BLOCK DIAGRAM

■ **ABSOLUTE MAXIMUM RATINGS** (all voltages are referenced to GND)

PARAMETER	SYMBOL	VALUES	UNIT
Supply Voltage to Ground	V_{DD}	7	V
Logic Input Voltage	V_{IN}	V_{DD}	V
Junction Temperature	TJ	+150	°C
Operating Ambient Temperature	T _{OPR}	-40 ~ +85	°C
Storage Temperature	T _{STG}	-65 ~ + 150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

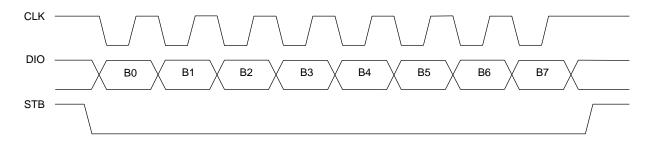
■ DC ELECTRICAL CHARACTERISTICS

DC electrical characteristics ($T_A = -40 \sim +85$ °C, $V_{CC} = 5.0$ V \pm 10%, GND = 0 V)

DO GIOGRAFICA GILARAGEO (TA = TO TEC	0, 100 0.0	. = , . , ,				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Logic Supply Voltage	V_{DD}		4.5	5.0	5.5	V
High Level Input Voltage	V _{IH}	High Level Guaranteed Digital Pins	0.7×V _{DD}		V _{DD}	V
Low Level Input Voltage	V _{IL}	Low Level Guaranteed Digital Pins	0		0.3×V _{DD}	٧
Hysteresis Voltage (DIN, CLK, STB pins)	V _{HYS}			0.35		V
Low Level Output Voltage	$V_{OL(DOUT)}$	D _{OUT} , I _{OL2} =4mA			0.4	V
Segment Drive LED Source Current	I _{OH}	$V_O=V_{DD}-3V$	-40	-75	-110	mΑ
GRID Drive LED Sink Current	I _{OL}	V _O =0.3V	80	120		mΑ
Segment Drive Current Matching	I _{TOLSEG}	V _{CC} =5.0V, T _A =25°C, V _{LED} =2.5 V		5		%

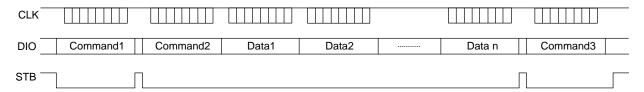
■ POWER SUPPLY CHARACTERISTICS (T_A = -40 to +85 °C, unless otherwise specified)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Quiescent Power Supply Current	I _{STBY}	V_{DD} =5.0V, All Inputs= V_{DD} or GND			1	mA
Operating Power Supply Current (display ON)	lcc	All Segments ON, All Digits Scanned, Intensity Set to Full, Internal Oscillator, No Display Load Connected			5	mA


■ TIMING CHARACTERISTICS

 $(T_A = -40 \sim +85$ °C, $V_{CC} = 5.0 V \pm 10\%$, Typical values are at 25 °C, unless otherwise specified)

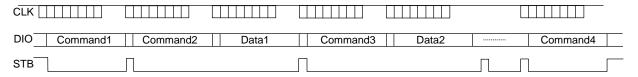
(1) 100 0, 100 010 1=10,10, 1) production		,				
PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Clock Pulse Width	PW _{CLK}			500		ns
Strobe Pulse Width	PW _{STB}			1		μs
Data Setup Time	t _{SETUP}			100		ns
Data Hold Time	t _{HOLD}	CLK Rising Edge to STB Rising Edge		100		ns
Clock-Strobe Time	t _{CLK-STB}			1		μs


SERIAL COMMUNICATION FORMAT (RECEPTION)

Data reception (write)

Application of serial data transfer:

 address increasing mode using automatic mode, set the address is actually set the starting address of the flow of data storage. The starting address sent command word, "STB" does not need to buy high, followed by the data up to 16 byte, data is transferred to "STB" high.



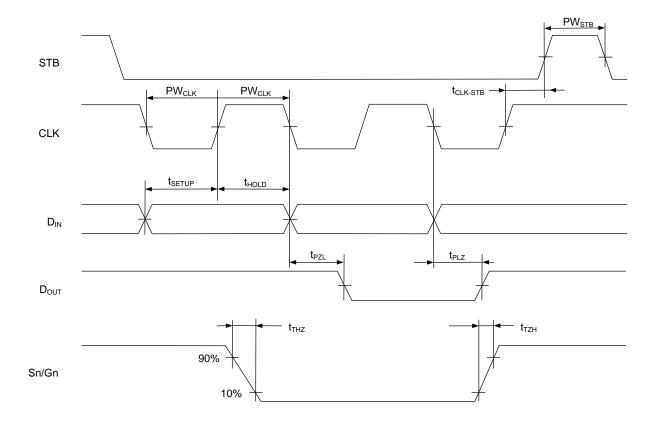
Command1: Set the data command Command2: Set the address command

Data1~n: Transmit data to the Command3 inside address and the following address (up to 16 bytes)

Command3: Display control command

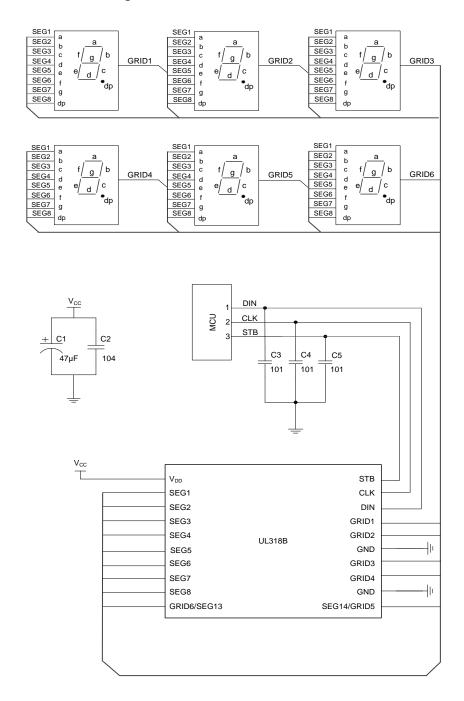
2. Fixed address mode using a fixed pattern, set the address of the set is, in fact, you need to pass 1 byte data store address. The address is sent, the "STB" is not need to buy high, followed by 1 byte data transfer, data is transferred to "STB" high. And then reset the second address, data needs to be stored up 16 byte data is transferred, "STB" high.

Command1: Set the data command Command2: Set the address1 command


Data1: Display data within 1 to Command3 address

Command3: Set the address2 command

Data2: Display data within 2 to Command4 address


Command4: Display control command

■ SWITCHING CHARACTERISTICS WAVEFORM

■ TYPICAL APPLICATION CIRCUIT

UL318B driver Common cathode digital screen hardware circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. UTC reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.